Vol. 47
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2004-04-15
3-Dimensional Implementation of the Field Iterative Method for Cavity Modeling
By
, Vol. 47, 27-47, 2004
Abstract
The analysis of electromagnetic scattering from cavity structure is very important to many practical applications. The field iterative method (FIM) is one of the promising methods to deal with the cavity problem. In this paper, 3-dimensional (3D) FIM has been implemented using Rao-Wilton-Glisson (RWG) basis function and an accurate equivalent model of the cavity. Two testing procedures, a newly developed point matching and conventional Galerkin's methods, have been discussed for better and simpler implementation of the 3D FIM. Numerical results show that the accuracy of the 3D implementation of FIM using the newly developed point matching method is the same as that of the conventional Galerkin's method. The numerical results also show that the simpler implementation of 3D FIM using the point matching method converges very fast for all the tested cases.
Citation
Chao-Fu Wang, Yuan Xu, and Yeow-Beng Gan, "3-Dimensional Implementation of the Field Iterative Method for Cavity Modeling," , Vol. 47, 27-47, 2004.
doi:10.2528/PIER03081401
References

1. Harrington, R. F. and J. R. Mautz, "A generalized network formulation for aperture Problems," IEEE Trans. Antennas Propagat., Vol. 24, No. 11, 870-873, 1976.
doi:10.1109/TAP.1976.1141420

2. Liang, C. H. and D. K. Cheng, "Electromagnetic field coupled into a cavity with a slot-aperture under resonant conditions," IEEE Trans. Antennas Propagat., Vol. 30, 664-672, 1982.
doi:10.1109/TAP.1982.1142881

3. Ling, H., R. Chou, and S. W. Lee, "Shooting and bouncing rays: Calculating RCS of an arbitrary cavity," IEEE Trans. Antennas Propagat., Vol. 37, No. 2, 194-205, 1989.
doi:10.1109/8.18706

4. Burkholder, R. J. and P. H. Pathak, "High-frequency electromagnetic scattering by open-ended waveguide cavities," Radio Sci., Vol. 26, No. 2, 211-218, 1991.

5. Basteiro, F. O., J. L. Rodriguez, and R. J. Burkholder, "An iterative physical optics approach for analyzing the electromagnetic scattering by large open-ended cavities," IEEE Trans. Antennas Propagat., Vol. 43, No. 4, 356-361, 1995.
doi:10.1109/8.376032

6. Jin, J. M. and J. L. Volakis, "A finite elementboundary integral formulation for scattering by three-dimensional cavity-backed apertures," IEEE Trans. Antennas Propagat., Vol. 39, No. 1, 97-104, 1991.
doi:10.1109/8.64442

7. Jin, J. M., The Finite Element Method in Electromagnetics, Wiley, 1993.

8. Jin, J. M., "Electromagnetic scattering from large, deep, and arbitrarily-shaped open cavities," Electromagn., Vol. 18, No. 1, 3-34, 1998.

9. Liu, J. and J. M. Jin, "A special higher order finite-element method for scattering by deep cavities," IEEE Trans. Antennas Propagat., Vol. 48, No. 5, 697-703, 2000.

10. Liu, J., E. Dunn, P. Baldensperger, and J. M. Jin, "Computation of radar cross section of jet engine inlet," Microwave Opt. Tech. Lett., Vol. 33, No. 5, 322-325, 2002.
doi:10.1002/mop.10309

11. Wang, T. M. and H. Ling, "Electromagnetics scattering from three-dimensional cavities via a connection scheme," IEEE Trans. Antennas Propagat., Vol. 39, No. 10, 1505-1513, 1991.
doi:10.1109/8.97382

12. Wang, T. M. and H. Ling, "A connection scheme on the problem of EM scattering from arbitrary cavities," J. Electromagn. Waves Appl., Vol. 5, No. 3301-314, 3301-314, 1991.

13. Reuster, D. D. and G. A. Thiele, "A field iterative method for computing the scattering electric field at the apertures of large perfectly conducting cavities," IEEE Trans. Antennas Propagat., Vol. 43, No. 3, 286-290, 1995.
doi:10.1109/8.371998

14. Wang, C. F., Y. B. Gan, T. H. Chien, and L. W. Li, "On the field iterative method for modeling of two-dimensional large aperture open-ended cavity," J. Electromagn. Waves Appl., Vol. 17, No. 8, 1113-1130, 2003.
doi:10.1163/156939303322519720

15. Wang, C. F., Y. B. Gan, and G. A. Thiele, "Field iterative method based on an accurate equivalent model of cavity," Technical Report No.: TL/EM/03/004, No. '' Technical Report : TL/EM/03/004, 2003.

16. Wang, C. F., Y. B. Gan, and G. A. Thiele, "An accurate equivalent model for field iterative method," IEEE APS Int. Symp. Dig., Vol. 2, 338-341, 2003.

17. Rao, S. M., D. R. Wilton, and A. W. Glisson, "Electromagnetic scattering by surface of arbitrary shape," IEEE Trans. Antennas Propagat., Vol. 30, No. 5, 409-418, 1982.
doi:10.1109/TAP.1982.1142818

18. Harrington, R. F., Time Harmonic Electromagnetic Fields, 106, 106- 110, 1961.

19. Balanis, C. A., Advanced Engineering Electromagnetics, Wiley, 1989.

20. Chew, W. C., Waves and Fields in Inhomogeneous Media, Van Nostand Reinhold, 1995.

21. Harrington, R. F., Field Computation by Moment Methods, Macmillan, 1968.

22. Lee, C. S. and S. W. Lee, "RCS of a coated circular waveguide terminated by a perfect conductor," IEEE Trans. Antennas Propagat., Vol. 35, No. 4, 391-398, 1987.
doi:10.1109/TAP.1987.1144114