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Abstract—The analysis of electromagnetic scattering from cavity
structure is very important to many practical applications. The field
iterative method (FIM) is one of the promising methods to deal with
the cavity problem. In this paper, 3-dimensional (3D) FIM has been
implemented using Rao-Wilton-Glisson (RWG) basis function and an
accurate equivalent model of the cavity. Two testing procedures, a
newly developed point matching and conventional Galerkin’s methods,
have been discussed for better and simpler implementation of the
3D FIM. Numerical results show that the accuracy of the 3D
implementation of FIM using the newly developed point matching
method is the same as that of the conventional Galerkin’s method.
The numerical results also show that the simpler implementation of
3D FIM using the point matching method converges very fast for all
the tested cases.
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1. INTRODUCTION

Electromagnetic modeling of open cavities is a problem of fundamental
importance in the reduction of back and forward scattering, as well as
electromagnetic penetration studies. It is well known that scattering
from the interior of the jet engine inlet cavities contributes significantly
to the overall back scattering of an aircraft. The first technique used
to analyze cavity structure is the generalized network formulation
(GNF) proposed by Harrington and Mautz [1]. The GNF decomposes
the scattering domain into two parts (i.e., an infinite half space and
a cavity) which are connected via currents on the fictitious surface
between the cavity and half space. However, the integral equation for
the closed domain bounded by an actually physical cavity wall and the
fictitious surface separating the cavity from the half space is plagued by
the usual problem of non-uniqueness at the cavity resonant frequency
[2]. In this approach, the interior and exterior fields of the cavity
are coupled by a fictitious magnetic current on the interface between
the cavity and free space. The virtue of this method is its relatively
simplicity; however, the price one pays is the appearance of spurious
resonance.

For very large cavities, high-frequency techniques based on ray-
tracing and edge diffraction can be employed to evaluate the scattering
pattern. These include the shooting and bouncing ray (SBR) method
[3], the generalized ray expansion (GRE) method [4], and the iterative
physical optics (IPO) method [5]. These approaches are promising for
cavity with simple interior geometry. An efficient approach based on
the finite element-boundary integral (FE-BI) method was proposed to
model cavity structures in [6, 7]. Recently, the FE-BI method has been
extended to simulate the scattering from very large and complex cavity
structures [8–10]. Another method for cavity modeling is a connection
scheme that was proposed using microwave network theory to reduce
both CPU time and memory requirement [11, 12].

As described in [13], the cavity problem, such as the
electromagnetic scattering from a jet engine, may be visualized as
consisting of three distinct phenomena: 1) an aperture field that
is established from the external region source; 2) the electric and
magnetic fields that propagate down the cavity, guided by the cavity
walls; and 3) reflection that occurs at the termination. Upon reflection,
the fields propagate back towards the aperture where they may be
integrated to give the far zone scattered field. Based on the field
propagation in the cavity, the field iterative method (FIM) [13] was
proposed to describe the propagation of the field from the aperture to
the termination and back to the aperture. Unfortunately, there are
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some errors in the original paper [13]. The FIM was carefully studied
in [14–16]. An accurate equivalent model of cavity for the FIM was
proposed in [15, 16]. The FIM based on the accurate equivalent model
of the cavity was implemented for 2-dimensional (2D) cavity problem
to verify the method. Good accuracy and convergence behaviour of
the FIM was observed for all 2D test cases. All simulation results can
be considered as benchmarks for 2D cavity modeling using the FIM
[15].

In this paper, the 3-dimensional (3D) FIM has been implemented
using the Rao-Wilton-Glisson (RWG) basis functions [17] to fit the
shape of cavity and the accurate equivalent model of cavity [15, 16]
to guarantee the accuracy of the FIM. Two testing procedures, i.e.,
a newly developed point matching and the conventional Galerkin’s
methods, will be discussed for better and simpler implementation of
the 3D FIM. Numerical results show that the accuracy of the 3D
implementation of the FIM using the newly developed point matching
method is the same as that of the conventional Galerkins method. The
numerical results also show that the simpler implementation of the 3D
FIM based on the point matching method converges very fast for all
test cases.

2. THEORY AND FORMULATIONS FOR FIM

2.1. Integral Equations for FIM

 

Figure 1. Cavity illuminated by an external plane wave.

Consider the problem as shown in Fig. 1. Here, an incident plane
wave illuminates part of the external cavity walls and the aperture.
The total scattered field consists of two parts, Es = Es

cav +Es
ext, where

Es
cav is the contribution from the interior of the cavity and Es

ext is the
contribution from the external surface, including the scattering from
the rim edge of the aperture at the open end. The aim of this research
is to study the internal scattering problem without consideration on
the scattering due to the external surface. Thus, we actually consider



30 Wang, Xu, and Gan

 

 

Figure 2. (a) The modified problem, (b) An accurate equivalent
model of the cavity problem.

the problem shown in Fig. 2(a), where n̂ is the unit surface normal
vector pointing into the cavity. S1 and S2 denote aperture surface and
cavity interior surface, respectively, and D denotes the cavity region
enclosed by S1 and S2. By using the equivalent principle and image
theory [18], an accurate equivalent model of cavity can be established
as shown in Fig. 2(b) [15, 16].

The total magnetic field due to the presence of both electric and
magnetic currents can be written as [19],

H(r) =
∫

S
J(r′) ×∇′G(r, r′)ds′ − j

k0Z0

{
k2

0

∫
S
G(r, r′)M(r′)ds′

+
∫

S
∇′∇′G(r, r′) · M(r′)ds′

}
, r ∈ D (1)

where S = S1+S2+Si
2, and G(r, r′) is the free space Green’s functions.

Applying the boundary conditions on the walls and aperture of the
cavity leads to

H(r) =
∫

S2

J(r′) ×∇′G(r, r′)ds′ +
∫

Si
2

Ji(r′) ×∇′G(r, r′)ds′
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− 2j
k0Z0

{
k2

0

∫
S1

G(r, r′)M(r′)ds′

−
∫

S1

∇′G(r, r′)∇′ · M(r′)ds′
}
, r ∈ D (2)

To obtain the integral equations governing the currents, the following
equation is used,

lim
r′′→r

n̂(r) ×
∫

S
J(r′) ×∇′G(r′′, r′)ds′

=
1
2
J(r) + n̂×

∫
S
J(r′) ×∇′G(r, r′)ds′ r′′ ∈ D, r ∈ S2 (3)

where the integral on the right hand side of equation (3) implies the
principal value of the integration. Eq. (3) can be established from the
evaluation of the residue of a divergent integral for scalar wave [20]
(see Appendix A).

With equation (3) and the equivalent electric current J = n̂×H,
after moving the field point r to S2, we obtained the final magnetic
field integral equation (MFIE),

J(r) =
1
2
J(r) + n̂×

∫
S2

J(r′) ×∇′G(r, r′)ds′

+n̂×
∫

Si
2

Ji(r′) ×∇′G(r, r′)ds′

− 2j
k0Z0

{
k2

0n̂×
∫

S1

G(r, r′)M(r′)ds′

−n̂×
∫

S1

∇′G(r, r′)∇′ · M(r′)ds′
}
, r ∈ S2 (4)

where the first integral in equation (4) implies the principal value of
the integration along S2. An equation for the scattered field at the
aperture of the cavity can be written using the electric field integral
equations (EFIE) as [15, 16],

Escat(r) = −jZ0

k0

{
k2

0

∫
S2

G(r, r′)J(r′)ds′ −
∫

S2

∇′G(r, r′)∇′ · J(r′)ds′
}

Using Mscat = Escat × n̂, we obtain the final EFIE,

Mscat(r) = −jZ0

k0

{
k2

0

∫
S2

G(r, r′)J(r′) × n̂ds′

−
∫

S2

∇′G(r, r′) × n̂∇′ · J(r′)ds′
}
, r ∈ S1 (5)
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Equations (4) and (5) can be implemented numerically by
expanding the electric and magnetic currents into series of basis
functions on the cavity walls and the aperture of the cavity,
respectively. To fit the arbitrary shape of the cavity, the RWG vector
basis functions [17] are chosen to approximate the electric and magnetic
currents, respectively. Assuming that there are N basis functions on
the cavity wall S2 and P basis functions on the aperture S1, namely,

J(r′) =
N∑

n=1

Hnfn(r′) r′ ∈ S2 (6)

M(r′) =
P∑

p=1

Epgp(r′) r′ ∈ S1 (7)

Mscat(r′) = Escat(r′) × n̂ =
P∑

p=1

Escat
p gp(r′) r′ ∈ S1 (8)

where fn, gp are RWG vector basis functions on S1 and S2, respectively.
As mentioned in [13–16], the standard procedure of method of moments
(MoM) can discretize the equations (3) and (4) into linear systems
of equations [17, 21]. For the testing procedure, the conventional
Galerkin’s and point matching methods can be applied to obtain
different FIM formulations, which are worth discussing in detail.

2.2. FIM Using Point Matching Method

 

Figure 3. The RWG basis function and its vector delta function.

For a given RWG basis function fm as shown in Fig. 3, a vector
delta function related to fm can be defined as tm = δ(r−rm)τ̂m, where
rm is the midpoint of edge {i, j}, τ̂m is a unit vector perpendicular to
the edge and parallel to the plane of triangle T+.
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Substituting equations (6)–(8) into equations (4) and (5) gives rise
to,

N∑
n=1

Hnfn(r) =
1
2

N∑
n=1

Hnfn(r) +
N∑

n=1

Hn

{∫
S2

n̂× (fn(r′)

×∇′G(r, r′)ds′ +
∫

Si
2

n̂× (f i
n(r′i) ×∇′G(r, r′i))ds

′
}

− 2j
k0Z0

P∑
p=1

Ep

{
k2

0n̂×
∫

S1

G(r, r′)gp(r′)ds′

−n̂×
∫

S1

∇′G(r, r′)∇′ · gp(r′)ds′
}

r ∈ S2 (9)

P∑
p=1

Escat
p gp(r) = −jZ0

k0

N∑
m=1

Hm

{
k2

0

∫
S2

G(r, r′)fm(r′) × n̂ds′

−
∫

S2

∇′G(r, r′) × n̂∇′ · fm(r′)ds′
}

(10)

Taking the inner products of both sides of equations (9) and (10) with
vector delta function tm results in the following equations

Hm =
N∑

n=1

UmnHn + 2
P∑

p=1

VmpEp, m = 1, 2, . . . , N (11)

Escat
i =

N∑
m=1

WimHm, m = 1, 2, . . . , P (12)

where

Umn =




1
2

+
∫

Si
2

τ̂m · n̂m × (f i
n(r′i) ×∇′G(rm, r′i))ds, m = n

∫
S2

τ̂m · n̂m × (fn(r′) ×∇′G(rm, r′i))ds
′

+
∫

Si
2

τ̂m · n̂m × (f i
n(r′i) ×∇′G(rm, r′i))ds

′, m �= n

Vmp = − j

k0Z0

{
k2

0 τ̂m · n̂m ×
∫

S1

G(rm, r′)gp(r′)ds′

−τ̂m · n̂m ×
∫

S1

∇′G(rm, r′)∇′ · gp(r′)ds′
}

Wim = −jZ0

k0

{
k2

0 τ̂i ·
∫

S2

G(ri, r′)fm(r′)ds′ × n̂i
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−τ̂i ·
∫

S2

∇′G(ri, r′)∇′ · fm(r′)ds′ × n̂i

}

where r′i is the image of the source point r′, rm is the midpoint of the
interior edge associated with the basis function fm, ri is the midpoint of
the interior edge associated with the basis function gi, f i

n is the image
of the basis function fn with respect to the perfect electric conductor
plane, n̂m, n̂i are unit normal vectors at field points rm and ri, which
are chosen as the unit normal vectors of triangles T+ in our numerical
simulation. It is also noted that the total electric field at the aperture
is given by the summation of the incident and scattered electric fields
that can be discretized into the following equation

[E] = [Einc] + [Escat] (13)

The above systems of linear equations (11)–(13) can be represented by
the following matrix equations in the form of FIM

[H] = [U ][H ′] + [V ][E] (14)
[Escat] = [W ][H] (15)

[E] = [Einc] + [Escat] (16)

2.3. FIM Using Galerkin’s Method

Applying Galerkin’s method to equations (4), (5), and total electric
field at the aperture results in the following equations, which are more
complicated than equations (14)–(16),

N∑
n=1

BmnHn =
N∑

n=1

UmnHn + 2
P∑

p=1

VmpEp, m = 1, 2, · · · , N (17)

P∑
p=1

AipE
scat
p =

N∑
m=1

WimHm, i = 1, 2, · · · , P (18)

P∑
p=1

AipEp = Ẽinc
i +

P∑
p=1

AipE
scat
i , i = 1, 2, · · · , P (19)

where

Aip =
∫

S1

gp(r) · gi(r)ds, Bmn =
∫

S2

fm(r) · fn(r)ds

Umn =
1
2
Bmn +

∫
S2

∫
S2

n̂m(r) ×
(
fn(r′) ×∇′G(r, r′)

)
· fm(r)ds′ds
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+
∫

S2

∫
Si

2

n̂m(r) ×
(
f i
n(r′) ×∇′G(r, r′i)

)
· fm(r)ds′ds

Vmp = − j

k0Z0

[
k2

0

∫
S2

∫
S1

n̂m(r) ×
(
G(r, r′)gp(r′)

)
· fm(r)ds′ds

−
∫

S2

∫
S1

n̂m(r) ×
(
∇′G(r, r′)∇′ · gp(r′)

)
· fm(r)ds′ds

]

Wim = −jZ0

k0

[
k2

0

∫
S1

∫
S2

(
G(r, r′)fm(r′) × n̂i(r)

)
· gi(r)ds′ds

−
∫

S1

∫
S2

(
∇′G(r, r′)∇′ · fm(r′) × n̂i(r)

)
· gi(r)ds′ds

]

Ẽinc
i =

∫
S1

Einc(r) · gi(r)ds

where n̂m(r), n̂i(r) are the unit normal vectors of triangles associated
with the basis functions fm and gi, respectively. Since Umn Vmp, Wim

involve the two-fold integrals and more time is needed to calculate
Bmn, Aip, the matrix filling is slightly more time consuming than the
point matching method.

The corresponding matrix equations of (17)–(19) are as follows,

[B][H] = [U ][H] + [V ][E] (20)
[A][Escat] = [W ][H] (21)

[A][E] = [Ẽinc] + [A][Escat] (22)

To construct the FIM formulations, the matrices [A] and [B] are
decomposed into two parts,

[B] = [BD] + [BC ], [A] = [AD] + [AC ] (23)

where [BD] and [AD] are the diagonal matrices of [B] and [A],
respectively, the remaining parts of corresponding matrices are [BC ]
and [AC ]. Using these decompositions of matrices [B] and [A], the
FIM formulations can be obtained as follows

[H] = [BD]−1
(
([U ] − [BC ])[H ′] + [V ][E]

)
(24)

[Escat] = [AD]−1
(
−[AC ][E

′,scat] + [W ][H]
)

(25)

[E] = [Einc] + [Escat] (26)

In the iteration process, the initial values are set to be [Einc,(0)] =
[AD]−1[Ẽinc] and [Einc] = [AD]−1

(
−[AC ][Einc] + [Ẽinc]

)
.
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3. NUMERICAL RESULTS

To verify and compare the 3D FIM formulations using the point
matching and Galerkin’s methods, the monostatic scattering from
several 3D cavities are analyzed. The first cavity investigated is a
3D rectangular cavity shown as in Fig. 4.

 

Figure 4. Geometry of the 3D rectangular Cavity.

Figures 5 and 6 show HH polarization (φφ polarization) and V V
polarization (θθ polarization) backscatter patterns of the rectangular
cavity with a = 4λ, b = 4λ and c = λ, and a = 4λ, b = 4λ and
c = 2λ, respectively. The results obtained using the FIM and MoM
are in good agreement when the incident angle is not very large, and
some differences occur between the results obtained using the FIM
and MoM for large incident angles. It should be noted that the
MoM provides a complete solution including not only the contribution
from the interior scattering but also the contributions from exterior
scattering and rim diffraction. In contrast, the FIM provides only the
contribution from the interior scattering. When the incident angle
θ is not very large, the interior contribution is dominant over other
contributions. If the incident angle is large, the contribution from the
exterior scattering becomes important. Therefore, difference between
the results obtained using the FIM and MoM is expected, especially for
cavity with small aperture. The better results for the V V case is due
to the less significant rim effect as compared to the HH polarization
case. Since Kirchhoff approximation is utilized in the FIM formulation,
better results are expected when the size of the aperture increases.
Figure 7 shows the backscatter patterns for the rectangular cavity with
a = 5λ, b = 5λ, c = λ. Better agreement between results obtained
using the FIM and MoM can be observed, as compared to that in
Fig. 7.
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Figure 5. Backscatter patterns of a rectangular cavity with a = 4λ,
b = 4λ, and c = λ for φ = 0◦. (a) HH polarization. (b) V V
polarization.
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Figure 6. Backscatter patterns of a rectangular cavity with a = 4λ,
b = 4λ and c = 2λ for φ = 0◦ (a) HH polarization. (b) V V
polarization.
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Figure 7. Backscatter patterns of a rectangular cavity with a = 5λ,
b = 5λ, and c = λ for φ = 0◦. (a) HH polarization. (b) V V
polarization.
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Figure 8. Geometry of 3D horn.

To check on the dependency of the testing procedures, numerical
results obtained using the FIM with point matching and Galerkin’s
methods are also given in Figs. 5–7. It can be seen that excellent
agreement is observed between the two testing procedures. This
validates the point matching method for RWG basis function, which
can result in a simpler FIM formulation.

The second cavity investigated is a metallic horn as shown in Fig. 8
with a1 = 4λ, b1 = 4λ, d1 = λ and a2 = 4λ, b2 = 4λ, d2 = λ. Figure 9
shows the backscatter patterns of the metallic horn cavity for HH (φφ)
and V V (θθ) polarizations. The results obtained using the FIM and
MoM agree well for all angles concerned. It is also observed that the
FIMs using the point matching and Galerkin’s methods have almost
same accuracy.

The last cavity investigated is a circular cavity with radius r = 3λ
and depth d = λ. Figure 10 shows the backscatter patterns of the
circular cavity for both HH (φφ) and V V (θθ) polarizations. The
results obtained using the FIM are compared to the results obtained
using an in-house code based on the mode matching method, which has
been verified to be correct and accurate for circular cavity modeling
[22]. All results agreed well for all angles concerned. It is also
observed that the results obtained using the FIMs with different testing
procedures have almost same accuracy.

In all numerical experiments discussed above, the convergence
criterion for all simulations requires that the root mean square
difference of the quantities is less than 1%, which is rather strict
for scattering analysis of the cavities. Table 1 gives the number of
unknowns and average number of iterations (ANI) for all incident
angles with different polarizations in all tested rectangular cavities.
It shows that the convergence of the FIM is very fast for all cases. In
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Figure 9. Backscatter patterns of rectangular horn with a1 = 4λ,
b1 = 4λ, a2 = λ, b2 = λ, d1 = λ, and d2 = λ for φ = 0◦. (a) HH
polarization. (b) V V polarization.
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Figure 10. Backscatter patterns of circular cavity with radius r = 3λ
and depth d = λ for φ = 0◦. (a) HH polarization. (b) V V
polarization.
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Table 1. The number of unknowns and average number of iterations
for different sizes of rectangular cavities.

Rectangular Cavity 
size 

Number of unknowns Average number of iterations 

×× 44  4620 19 

×× 55 6320 20 

244 ××  9344 21 

×× 5.75.7  12030 17 

λ

λ

λλ

λλλ

λ

λ λ

λ

λ

particular, when the size of cavity increases, the ANI seems to remain
almost the same. Similar convergence behaviour has also been observed
for the horn and circular cavities.

4. CONCLUSIONS

3D field iterative method has been implemented using two different
testing procedures, i.e., the point matching method and Galerkin’s
method, and has been verified by the simulation of backscattering from
several different cavities. All test cases show that the FIM is accurate
for large cavity and converges quite rapidly. The number of iterations
appears to be somewhat independent of the size of cavity. The FIM
using the point matching method is sufficiently accurate for large cavity
modeling. This will keep the formulation of the 3D implementation of
the FIM as simple as that of 2D. This also retains some advantages
of the original FIM [13], such as, the FIM iterative procedure consists
solely of vector inner products, and none of these matrices need to
be inverted. Thus, the iterative solution process is directly applicable
to high-speed vector processing computer systems and also to parallel
processing systems.
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APPENDIX A.

When the field point r′′ is an interior point in the cavity region D, as
r′′ approaches to a point r on S2, we need to exclude this point with a
small half sphere having a small surface as depicted in Fig. A1.

 

Figure A1. Geometry for a problem with the field point r being on
cavity surface S2.

n̂(r) ×
∫

S
J(r′) ×∇′G(r′′, r′)ds′

= n̂(r) ×
∫

Sa+SC

J(r′) ×∇′G(r′′, r′)ds′ (A1)

As r′′ → r, the integral over SC goes to the second term on the right
hand side of eq. (3). Let us now focus on the surface integral over Sa.
On Sa, R = |r′′ − r′| = |r′′ − r| is infinitesimal and therefore the phase
factors in G(r′′, r′) and ∇′G(r′′, r′) are negligible. By using the mean
value for fields at r and with

∇′G(r′′, r′) =
1 + jk0R

4πR2
e−jk0RR̂ and R̂ =

r′′ − r′

|r′′ − r′| ,

we obtain

lim
r′′→r

n̂(r) ×
∫

Sa

J(r′) ×∇′G(r′′, r′)ds′

= lim
R→0

n̂(r) ×
(
J(r) ×∇′G(r′′, r)

)
· 2πR2

= lim
R→0

1 + jk0R

4πR2
e−jk0R · 2πR2J(r) =

1
2
J(r)

Thus, the validity of equation (3) is established. The same idea can be
found in evaluating the residue of a divergent integral for scalar wave
[20].
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