Vol. 33
Latest Volume
All Volumes
PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2011-07-30
A Negative Refractive Index Metamaterial Based on a Cubic Array of Layered Nonmagnetic Spherical Particles
By
Progress In Electromagnetics Research B, Vol. 33, 175-202, 2011
Abstract
A low-loss passive metamaterial exhibiting negative refractive index or ``double negative'' electromagnetic properties at microwave frequencies is proposed. The metamaterial is a lattice of spherical particles made up of multiple dielectric materials in concentric layers. Because no magnetic constituents (that tend to have higher losses) are involved, the negative-index behavior is possible with very low values of attenuation. A negative-index metamaterial based on dielectric-coated metal spheres is also proposed, and is predicted to have lower attenuation than other structures based on metallic scatterers. Numerical results and design principles are given.
Citation
Edward F. Kuester, Nadja Memic, Simone Shen, Aaron D. Scher, Sung Kim, Kendra Kumley, and Hung Loui, "A Negative Refractive Index Metamaterial Based on a Cubic Array of Layered Nonmagnetic Spherical Particles," Progress In Electromagnetics Research B, Vol. 33, 175-202, 2011.
doi:10.2528/PIERB11042206
References

1. Smith, D. R., W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett., Vol. 84, 4184-4187, 2000.
doi:10.1103/PhysRevLett.84.4184

2. Holloway, C. L., E. F. Kuester, J. Baker-Jarvis, and P. Kabos, "A double negative (DNG) composite medium composed of magneto-dielectric spherical particles embedded in a matrix," IEEE Trans. Ant. Prop., Vol. 51, 2596-2603, 2003.
doi:10.1109/TAP.2003.817563

3. Vendik, O. G. and M. S. Gashinova, "Artificial double negative (DNG) media composed by two different dielectric sphere lattices embedded in a dielectric matrix ," Proceedings 34th European Microwave Conference, 1209-1212, Amsterdam, October 12-14, 2004.

4. Vendik, I. B., O. G. Vendik, and M. S. Gashinova, "Artificial dielectric medium possessing simultaneously negative permittivity and magnetic permeability," Pisma Zhurn. Tekh. Fiz., Vol. 32, No. 10, 30-39, 2006 (in Russian); Tech. Phys. Lett., , Vol. 32, 429-432, (in English).

5. Jylhä, L., I. Kolmakov, S. Maslovski, and S. Tretyakov, "Modeling of isotropic backward-wave materials composed of resonant spheres," J. Appl. Phys., Vol. 99, art. 043102, 2006.

6. Vendik, I., O. Vendik, I. Kolmakov, and M. Odit, "Modelling of isotropic double negative media for microwave applications," Opto-Electron. Rev., Vol. 14, 179-186, 2006.
doi:10.2478/s11772-006-0023-z

7. Yannopapas, V., "Negative refraction in random photonic alloys of polaritonic and plasmonic microspheres," Phys. Rev. B, Vol. 75, art. 035112, 2007.

8. Ahmadi, A. and H. Mosallaei, "Physical configuration and performance modeling of all-dielectric metamaterials," Phys. Rev. B, art. 035112, 2007.

8. Ahmadi, A. and H. Mosallaei, "Physical configuration and performance modeling of all-dielectric metamaterials," Phys. Rev. B, Vol. 77, art. 045104, 2008.

9. Vendik, I. B., M. A. Odit, and D. S. Kozlov, "3D isotropic metamaterial based on a regular array of resonant dielectric spherical inclusions," Metamaterials , Vol. 3, 140-147, 2009.
doi:10.1016/j.metmat.2009.09.001

10. Ghadarghadr, S. and H. Mosallaei, "Dispersion diagram characteristics of periodic array of dielectric and magnetic materials based spheres," IEEE Trans. Ant. Prop., Vol. 57, 149-160, 2009.
doi:10.1109/TAP.2008.2009725

11. Vendik, I., M. Odit, and D. Kozlov, "3D metamaterial based on a regular array of resonant dielectric inclusions," Radioengineering, Vol. 18, 111-116, 2009.

12. Shore, R. and A. D. Yaghjian, "Traveling waves on three-dimensional periodic arrays of two different alternating magnetodielectric spheres," IEEE Trans. Ant. Prop., Vol. 57, 3077-3091, 2009.
doi:10.1109/TAP.2009.2024495

13. Vendik, I. B., O. G. Vendik, and M. A. Odit, "An isotropic metamaterial formed with ferroelectric ceramic spherical inclusions," Fiz. Tverd. Tela, Vol. 51, 1499-1503, (in Russian); Phys. Solid State, Vol. 51, 1590{1594, 2009 (in English).

14. Yannopapas, V. and A. Moroz, "Negative refractive index metamaterials from inherently non-magnetic materials for deep infrared to terahertz frequency ranges," J. Phys. Cond. Mat., Vol. 17, 3717-3734, 2005.
doi:10.1088/0953-8984/17/25/002

15. Seo, B.-J., T. Ueda, T. Itoh, and H. Fetterman, "Isotropic left handed material at optical frequency with dielectric spheres embedded in negative permittivity medium," Appl. Phys. Lett., Vol. 88, art. 161122, 2006.

16. Wheeler, M. S., J. S. Aitchison, and M. Mojahedi, "Coated nonmagnetic spheres with a negative index of refraction at infrared frequencies," Phys. Rev. B, Vol. 73, art. 045105, 2006.

17. Yannopapas, V., "Negative refractive index in the near-UV from Au-coated CuCl nanoparticle superlattices," Phys. Stat. Sol. (RRL), Vol. 1, 208-210, 2007.
doi:10.1002/pssr.200701191

18. Khoo, I. C., A. Diaz, D.-H. Kwon, and D. H. Werner, "Liquid crystalline nonlinear optical metamaterials with low-loss tunable negative-zero-positive refractive indices," Proc. SPIE, 6587, art. 658702, 2007.

19. Alù, A. and N. Engheta, "Polarizabilities and effective parameters for collections of spherical nanoparticles formed by pairs of concentric double-negative, single-negative, and/or double-positive metamaterial layers," J. Appl. Phys., Vol. 97, art. 094310, 2005.

20. Mie, G., "Beiträge sur Optik trüber Medien, speziell kolloidaler Metallösungen," Ann. Physik, 4th Folge, Bd. 25, 377-445, 1908; Library Translation 1873 , Royal Aircraft Establishment, London, UK, 1976 (in English); Report SAND78-6018, Sandia Laboratories, Albuquerque, NM, 1978.

21. Kerker, M., Scattering of Light and Other Electromagnetic Radiation, Academic Press, New York, 1969.

22. Keller, O., "Optical works of L. V. Lorenz," Progress in Optics, Vol. 43, E. Wolf, ed., Vol. 43, 195-294, Elsevier, Amsterdam, 2002.

23. Gans, R. and H. Happel, "Zur Optik kolloidaler Metallösungen," Ann. Physik, 4th Folge, Bd. 29, 277-300, 1909.

24. Stratton, J. A., "The effect of rain and fog on the propagation of very short radio waves," Proc. IRE, Vol. 18, 1064-1074, 1930.
doi:10.1109/JRPROC.1930.222101

25. Kreibig, U. and M. Vollmer, "Optical Properties of Metal Clusters," 144, Springer-Verlag, Berlin, 1995.

26. Bohren, C. F. and D. R. Huffman, Absorption and Scattering of Light by Small Particles, Wiley, New York, 1983.

27. Abramowitz, M. and I. A. Stegun, "Handbook of Mathematical Functions," Chapter 10, U. S. Government Printing Office, Washington DC, 1964.

28. Lewin, L., "The electrical constants of a material loaded with spherical particles ," J. IEE (London), Part III, Vol. 94, 65-68, 1947.

29. Khizhnyak, N. A., "Artificial anisotropic dielectrics: I, II and III," Zh. Tekh. Fiz., Vol. 27, 2006-2013, 2014-2026 and 2027-2037, 1957 (in Russian); Sov. Phys. Tech. Phys., Vol. 2, 1858-1864, 1865-1876 and 1877-1886, 1957 (in English).

30. Aden, A. L. and M. Kerker, "Scattering of electromagnetic waves from two concentric spheres," J. Appl. Phys., Vol. 22, 1242-1246, 1951.
doi:10.1063/1.1699834

31. Güttler, A., "Die Miesche Theorie der Beugung durch dielektrische Kugeln mit absorbierendem Kern und ihre Bedeutung für Probleme der interstellaren Materie und des atmosphärischen Aerosols," Ann. Physik, 6th Folge, Bd. 11, 65-98, 1952.

32. Shifrin, K. S., "Scattering of light from two-layer particles," Izv. Akad. Nauk SSSR Ser. Geofiz., Vol. 2, 15-21, 1952 (in Russian).

33. Fenn, R. W. and H. Oser, "Scattering properties of concentric soot-water spheres for visible and infrared light," Appl. Opt., Vol. 4, 1504-1509, 1965.
doi:10.1364/AO.4.001504

34. Krekov, G. M. and R. F. Rakhimov, "Calculation of radiation characteristics of polydisperse concentric spheres," Izv. VUZ Fiz., Vol. 6, 30-35, 1973 (in Russian); Sov. Phys. J., Vol. 16, 762-766, 1973 (in English).

35. Galst'yan, E. A. and A. A. Ravaev, "Electrodynamic parameters of a medium containing two-layer spherical inclusions," Izv. VUZ Radiofiz., Vol. 30, 1243-1248, 1987 (in Russian); Radiophys. Quant. Electron., Vol. 30, 918-922, 1987 (in English).

36. Ponomarenko, V. I., V. N. Berzhanskii, S. I. Zhuravlev, and E. D. Pershina, "Permittivity and permeability of a synthetic dielectric with metal-plated ferrite particles at microwave frequencies," Radiotekh. Elektron., Vol. 35, 2208-2211, 1990 (in Russian); Sov. J. Commun. Technol. Electron., Vol. 36, No. 3 133-136, 1991 (in English).

37. Ponomarenko, V. I. and D. I. Mirovitskii, "An artificial dielectric with metallized magnetodielectric inserts," Radiotekhnika, Vol. 46, No. 6, 76{78, 1991 (in Russian); Telecommun. Radio Eng., Vol. 46, No. 5, 104-107, 1991 (in English).

38. Timoshenko, A. M. and V. I. Ponomarenko, "A generalized formula for the electromagnetic constants of a medium with spherical inclusions," Radiotekh. Elektron., Vol. 41, 412-415, 1996 (in Russian); J. Commun. Technol. Electron., Vol. 41, 379-382, 1996 (in English).

39. Scher, A. D. and E. F. Kuester, "Extracting the bulk effective parameters of a metamaterial via the scattering from a single planar array of particles," Metamaterials, Vol. 3, 44-55, 2009.
doi:10.1016/j.metmat.2009.02.001

40. Trans-Tech Incorporated, http://www.trans-techinc.com.

41. Morgan Electro Ceramics Ltd., http://www.morganelectroceramics.com.

42. TCI Ceramics, http://www.magneticsgroup.com.

43. Temex Ceramics, http://www.temex-ceramics.com.

44. Pacific Ceramics, http://www.pceramics.com.

45. Schussler, M., A. Fleckenstein, J. Freese, and R. Jakoby, "Left-handed metamaterials based on split ring resonators for microstrip applications ," 33rd European Microwave Conference, 1119-1122, 2003.

46. Zhang, S., W. Fan, K. J. Malloy, S. R. J. Brueck, N. C. Panoiu, and R. M. Osgood, "Demonstration of metal-dielectric negativeindex metamaterials with improved performance at optical frequencies ," J. Opt. Soc. Amer. B, Vol. 23, 434-438, 2006.
doi:10.1364/JOSAB.23.000434

47. Zhang, S., W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, "Optical negative-index bulk metamaterials consisting of 2D perforated metal-dielectric stacks," Opt. Express, Vol. 14, 6778-6787, 2006.
doi:10.1364/OE.14.006778

48. Dolling, G., C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, "Low-loss negative-index metamaterial at telecommunication wavelengths," Opt. Lett., Vol. 31, 1800-1802, 2006.
doi:10.1364/OL.31.001800

49. Gokkavas, M., K. Guven, I. Bulu, K. Aydin, R. S. Penciu, M. Kafesaki, C. M. Soukoulis, and E. Ozbay, "Experimental demonstration of a left-handed metamaterial operating at 100 GHz," Phys. Rev. B, Vol. 73, art. 193103, 2006.

50. He, Y., P. He, V. G. Harris, and C. Vittoria, "Role of ferrites in negative index metamaterials," IEEE Trans. Magnetics, Vol. 42, 2852-2854, 2006.
doi:10.1109/TMAG.2006.879146

51. He, Y., P. He, S. D. Yoon, P. V. Parimi, F. J. Rachford, V. G. Harris, and C. Vittoria, "Tunable negative index metamaterial using yttrium iron garnet," J. Mag. Mag. Mater., Vol. 313, 187-191, 2007.
doi:10.1016/j.jmmm.2006.12.031

52. Dolling, G., M. Wegener, C. M. Soukoulis, and S. Linden, "Design-related losses of double-fishnet negative-index photonic metamaterials," Opt. Express, Vol. 15, 11536-11541, 2007.
doi:10.1364/OE.15.011536

53. Koschny, T., J. Zhoua, and C. M. Soukoulis, "Magnetic response and negative refractive index of metamaterials," Proc. SPIE, Vol. 6581, art. 658103, 2007.

54. Guven, K., A. O. Cakmak, M. D. Caliskan, T. F. Gundogdu, M. Kafesaki, C. M. Soukoulis, and E Ozbay, "Bilayer metamaterial: Analysis of left-handed transmission and retrieval of effective medium parameters," J. Opt. A, Vol. 9, S361-S365, 2007.
doi:10.1088/1464-4258/9/9/S13

55. Kildishev, A. V., U. K. Chettiar, V. M. Shalaev, D.-H. Kwon, Z. Bayraktar, and D. H. Werner, "Stochastic optimization of lowloss optical negative-index metamaterial," J. Opt. Soc. Amer. B, Vol. 24, A34-A39, 2007.
doi:10.1364/JOSAB.24.000A34

56. Erentok, A., A., R. W. Ziolkowski, J. A. Nielsen, R. B. Greegor, C. G. Parazzoli, M. H. Tanielian, S. A. Cummer, B.-I. Popa, T. Hand, D. C. Vier, and S. Schultz, "Low frequency lumped element-based negative index metamaterial," Appl. Phys. Lett., Vol. 91, art. 184104, 2007.

57. Paul, O., C. Imhof, B. Reinhard, R. Zengerle, and R. Beigang, "Negative index bulk metamaterial at terahertz frequencies," Opt. Express, Vol. 16, 6736-6744, 2008.
doi:10.1364/OE.16.006736

58. Valentine, J., S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, "Three-dimensional optical metamaterial with a negative refractive index," Nature, Vol. 455, 376-379, 2008.
doi:10.1038/nature07247

59. Xiao, S., U. K. Chettiar, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, "Yellow-light negative-index metamaterials," Opt. Lett., Vol. 34, 3478-3480, 2009.
doi:10.1364/OL.34.003478

60. Weis, P., O. Paul, C. Imhof, R. Beigang, and M. Rahm, "Strongly birefringent metamaterials as negative index terahertz wave plates," Appl. Phys. Lett., Vol. 95, art. 171104, 2009.

61. Lepetit, T., E. Akmansoya, and J.-P. Ganneb, "All-dielectric metamaterial: A ferroelectric-based scheme in the microwave range ," Proc. SPIE, Vol. 7392, art. 73920H, 2009.

62. Andryieuski, A., C. Menzel, C. Rockstuhl, R. Malureanu, and A. V. Lavrinenko, "The split cube in a cage: Bulk negative-index material for infrared applications," J. Opt. A, Vol. 11, art. 114010, 2009.

63. Ding, P., E. J. Liang, W. Q. Hu, L. Zhang, Q. Zhou, and Q. Z. Xue, "Numerical simulations of terahertz double-negative metamaterial with isotropic-like fishnet structure," Photon. Nanostruct. Fund. Appl., Vol. 7, 92-100, 2009.
doi:10.1016/j.photonics.2008.12.005

64. Kanté, B., A. de Lustrac, and J.-M. Loutioz, "Low loss negative index metamaterials with one type of meta-atom," Photon. Nanostruct. Fund. Appl., Vol. 8, 112-119, 2010.
doi:10.1016/j.photonics.2009.08.001

65. Alici, K. B. and E. Ozbay, "Theoretical study and experimental realization of a low-loss metamaterial operating at the millimeter-wave regime: Demonstrations of flat- and prism-shaped samples," IEEE J. Selected Topics Quant. Electron., Vol. 16, 386-393, 2010.
doi:10.1109/JSTQE.2009.2032668

66. Burgos, S. P., R. de Waele, A. Polman, and H. A. Atwater, "A single-layer wide-angle negative-index metamaterial at visible frequencies," Nature Materials, Vol. 9, 407-412, 2010.
doi:10.1038/nmat2747

67. Tang, J. and S. He, "A novel structure for double negative NIMs towards UV spectrum with high FOM," Opt. Express, Vol. 18, 25256-25263, 2010.
doi:10.1364/OE.18.025256

68. Gong, B. and X. Zhao, "Numerical demonstration of a three-dimensional negative-index metamaterial at optical frequencies," Opt. Express, Vol. 19, 289-296, 2011.
doi:10.1364/OE.19.000289

69. García-Meca, C., J. Hurtado, J. Martí, A. Martínez, W. Dickson, and A. V. Zayats, "Low-loss multilayered metamaterial exhibiting a negative index of refraction at visible wavelengths," Phys. Rev. Lett., Vol. 106, art. 067402, 2011.

70. Goodwin, E. T., "Recurrence relations for cross products of Bessel functions," Quart. J. Mech. Appl. Math., Vol. 2, 72-74, 1949.