1. Graglia, R. D., P. L. E. Uslenghi, and R. E. Zich, "Dispersion relation for bianisotropic materials and its symmetry properties," IEEE Trans. Antennas Propagat., Vol. 39, No. 1, 83-90, 1991.
doi:10.1109/8.64440
2. Mesa, F. L., R. Marques, and M. Horno, "A generalized algorithm for computing the bidimensional spectral Green’s dyad in multilayered complex bianisotropic media: the equivalent boundary method," IEEE Trans. Microwave Theory Tech., Vol. 39, No. 9, 1640-1648, 1991.
doi:10.1109/22.83841
3. Tsalamengas, J. L., "Interaction of electromagnetic waves with general bianisotropic slabs," IEEE Trans. Microwave Theory and Tech., Vol. 40, No. 10, 1870-1878, 1992.
doi:10.1109/22.159623
4. Olyslager, F., "Time-harmonic two- and three-dimensional Green’s dyadics for general uniaxial bianisotropic media," IEEE Trans. Antennas and Propagat., Vol. 43, No. 4, 430-434, 1995.
doi:10.1109/8.376044
5. Olyslager, F. and B. Jakoby, "Time- harmonic two- and three-dimensional Green’s dyadics for a special class of gyrotropic bianisotropic media," IEE Proc.-Microw. Antennas and Propagat., Vol. 143, No. 5, 413-416, 1996.
doi:10.1049/ip-map:19960589
6. Weiglhofer, W. S. and A. Lakhtakia, "Dyadic Green functions for axiallyv arying fields in helicoidal bianisotropic media," J. Appl. Electromagn. Mech., Vol. 6, 221-234, 1995.
7. Lakhtakia, A. and W. S. Weiglhofer, "Green function for radiation and propagation in helicoidal bianisotropic mediums," IEE Proc. --- H, Vol. 144, No. 1, 55-59, 1997.
8. Lakhtakia, A., K. Robbie, and M. J. Brett, "Spectral Green’s function for wave excitation and propagation in a piezoelectric, continuouslyt wisted, structurallyc hiral medium," J. Acoust. Soc. Am., Vol. 101, No. 4, 2052-2058, 1997.
doi:10.1121/1.418137
9. Lakhtakia, A. and W. S.Weiglhofer, "On light propagation in helicoidal bianisotropic medium," Proc. R. Soc. Lond. A, Vol. 438, 419-437, 1995.
doi:10.1098/rspa.1995.0025
10. Lakhtakia, A., "Wave propagation in a piezoelectric continuously twisted, structurallyc hiral medium along the axis of spirality," Appl. Acoust., Vol. 44, 25-37, 1995; errata: Vol. 44, 385, 1995.
doi:10.1016/0003-682X(94)P4417-5
11. Lakhtakia, A. and W. S. Weiglhofer, "Further results on light propagation in helicoidal bianisotropic mediums: oblique propagation," Proc. R. Soc. Lond., A, Vol. 453, 93-105, 1997.
doi:10.1098/rspa.1997.0006
12. Lakhtakia, A., "Exact analytic solution for oblique propagation in a piezoelectric, continuouslyt wisted, structurallyc hiral medium," Appl. Acoust., Vol. 49, 222-236, 1996.
13. He, S. and I. V. Lindell, "Propagation eigenmodes for plane waves in a uniaxial bianisotropic medium and reflection from a planar interface," IEEE Trans. Antennas Propagat., Vol. 41, No. 12, 1659-1664, 1993.
doi:10.1109/8.273309
14. Yang, H.-Y., "A spectral recursive transmission method for electromagnetic waves in generalied anisotropic layered media," IEEE Trans. Antennas Propagat., Vol. 45, No. 3, 520-526, 1997.
doi:10.1109/8.558667
15. Norgren, M. and S. He, "On the possibilityof reflectionless coating of a homogeneous bianisotropic layer on a perfect conductor," Electromagnetics, Vol. l7, No. 4, 295-308, 1997.
doi:10.1080/02726349708908541
16. Yang, H.-Y. and P. L. E. Uslenghi, "Theoryof certain bianisotropic waveguide," Radio Science, Vol. 28, 919-927, 1993.
doi:10.1029/93RS00904
17. Olyslager, F., "Properties of and generalized full- wave transmission line models for hybrid (bi)(an)isotropic waveguides," IEEE Trans. Microwave Theory Tech., Vol. 44, No. 11, 2064-2075, 1996.
doi:10.1109/22.543964
18. Graglia, R. D., M. S. Sarto, and P. L. E. Uslenghi, "TE and TM modes in cylindrical metallic structures filled with bianisotropic materials," IEEE Trans. Microwave Theory Tech., Vol. 44, No. 8, 1470-1477, 1996.
doi:10.1109/22.536030
19. Uslenghi, P. L. E., "TE-TM decoupling for guided propagation in bianisotropic media," IEEE Trans. Antennas Propagat., Vol. 45, No. 2, 284-286, 1997.
doi:10.1109/8.560347
20. Xu, Y. and R. G. Bosisio, "An efficient method for studyof general bianisotropic waveguides," IEEE Trans. Microwave Theory Tech., Vol. 43, No. 4, 873-879, 1995.
doi:10.1109/22.375237
21. Xu, Y. and R. G. Bosisio, "A studyon the solutions of chirowaveguides bianisotropic waveguides with the use of coupledmode analysis," Micro. Opt. Tech. Lett., Vol. 14, No. 5, 308-311, 1997.
doi:10.1002/(SICI)1098-2760(19970405)14:5<308::AID-MOP17>3.0.CO;2-2
22. Valor, L. and J. Zapata, "An efficient finite element formulation to analyze waveguides with lossy inhomogeneous bianisotropic materials," IEEE Trans. Microwave Theory Tech., Vol. 44, No. 2, 291-296, 1996.
doi:10.1109/22.481579
23. Jakoby, B. and D. D. Zutter, "Analysis of guided waves in inhomogeneous bianisotropic cylindrical waveguides," IEEE Trans. Microwave Theory Tech., Vol. 44, No. 2, 297-310, 1996.
doi:10.1109/22.481580
24. Yin, W. Y., W. Wan, and W. B. Wang, "Mode bifurcation and attenuation in circular Faradayc hirowaveguide-summary," J. Electromagn. Waves and Appl., Vol. 10, 1389-1394, 1996.
doi:10.1163/156939396X00144
25. Olyslager, F., E. Laermans, and D. D. Zutter, "Rigorous quasi-TEM analysis of multiconductor transmission lines in bi-isotrop media- Part I: theoretical analysis for general inhomogeneous media and generalization to bianisotropic media," IEEE Trans. Microwave Theory Tech., Vol. 43, No. 7, 1409-1415, 1995.
doi:10.1109/22.392897
26. Jakoby, B. and Ali-Reza Baghai-Wadji, "Analysis of bianisotropic layered structures with laterally periodic inhomogeneities --- an eigenoperator formulation," IEEE Trans. Antennas Propagat., Vol. 44, No. 5, 615-626, 1996.
doi:10.1109/8.496247
27. Hanson, G. W., "A numerical formulation of dyadic Green’s functions for planar bianisotropic media with application to printed transmission lines," IEEE Trans. Microwave Theory Tech., Vol. 44, No. 1, 144-151, 1996.
doi:10.1109/22.481396
28. Yin, W. Y., W. Wan, and W. B. Wang, "Radiation from a dipole antenna on two-layer grounded Faraday chiral substrates," J. Electromagn. Waves and Appl., Vol. 9, No. 7/8, 1027-1044, 1995.
doi:10.1163/156939395X00703
29. Yin, W. Y., "The features of Mueller scattering scattering matrix for two penetrable composite Faradayc hiral cylinder," J. Electromagn. Waves and Appl., Vol. 10, 1199-1216, 1996.
doi:10.1163/156939396X00667
30. Yin, W. Y., H. L. Zhao, and W. Wan, "Parametric studyon the scattering characteristics of two impedance cylinders eccentrically coated with Faradayc hiral materials," J. Electromagn. Waves and Appl., Vol. 10, 1467-1484, 1996.
doi:10.1163/156939396X00874
31. Yin, W. Y., "Scattering bya linear arrayof uniaxial bianisotropic chiral cylinders ," Micro. and Opt. Tech. Lett., Vol. 12, No. 5, 287-295, 1996.
doi:10.1002/(SICI)1098-2760(19960805)12:5<287::AID-MOP13>3.0.CO;2-6
32. Olyslager, F., "The behavior of electromagnetic fields at edges in bi-isotropic and bianisotropic materials," IEEE Trans. Antennas Propagat., Vol. 42, No. 10, 1392-1397, 1994.
doi:10.1109/8.320745
33. Olyslager, F., "Overview of the singular behavior of electromagnetic fields at edges and tips in bi-isotropic and special bianisotropic media ," Radio Science, Vol. 30, No. 5, 1349-1354, 1995.
doi:10.1029/95RS01528
34. Sihvola, A. H., J. O. Juntunen, and P. Eratuuli, "Macroscopic electromagnetic properties of bi-anisotropic mixtures," IEEE Trans. Antennas Propagat., Vol. 44, No. 6, 836-843, 1996.
doi:10.1109/8.509887
35. Chung, C. Y. and K. W. Whites, "Effective constitutive parameters for an artificial uniaxial bianisotropic chiral medium," J. Electromagn. Waves and Appl., Vol. 10, 1363-1388, 1996.
doi:10.1163/156939396X00135
36. Whites, K. W. and C. Y. Chung, "Composite uniaxial bianisotropic chiral materials characterization: comparison of predicted and measured scattering," J. Electromagn. Waves and Appl., Vol. 11, 377-387, 1997.
37. Theron, I. P. and J. H. Cloete, "The electric quadrupole contribution to the circular birefringence of nonmagnetic anisotropic chiral media: a circular waveguide experiment," IEEE Trans. Microwave Theory Tech., Vol. 44, No. 4, 1451-1459, 1996.
doi:10.1109/22.536028
38. Kamenetskii, E. O., "On the technologyof making chiral and bianisotropic waveguides for microwave propagation," Micro. Opt. Tech. Lett., Vol. 14, No. 11, 103-107, 1996.
doi:10.1002/(SICI)1098-2760(19960205)11:2<103::AID-MOP17>3.0.CO;2-F
39. Tretyakov, S. A., A. A. Sochava, and D. Y. Khaliullin, "Artificial nonreciprocal uniaxial magnetoelectric composites," Micro. Opt. Tech. Lett., Vol. 15, No. 4, 260-263, 1997.
doi:10.1002/(SICI)1098-2760(199707)15:4<260::AID-MOP18>3.0.CO;2-B
40. Varadan, V. V., A. Lakhtakia, and V. K. Varadan, "Propagation through a periodic chiral arrangement of identical uniaxial dielectric layers and its effective properties," Optik, Vol. 83, No. 1, 26-29, 1989.
41. Kazantsev, Y. N. and G. A. Kraftmakher, "Microwave permeability of chiral media. Mutual influence of chiral and ferromagnetic resonances in a chiral medium-ferrite structure," J. Commun. Tech. and Electron., Vol. 42, No. 3, 277-283, 1997.
42. Taouk, H., "Optical wave propagation in active media: Gyrotropic-gyrochiral media," J. Opt. Soc. Am. A, Vol. 14, No. 3, 193-200, 1997.
43. Mesa, F. and M. Horno, "Application of the spectral domain method for the studyof surface slow waves in nonreciprocal planar structures with a multilayered gyroelectric substrate," IEE Proc. --- H, Vol. 140, No. 3, 193-200, 1993.
44. Hsia, I. Y. and N. G. Alexopoulos, "Radiation characteristics of Hertzian dipole antennas in a nonreciprocal superstrate-substrate structure," IEEE Trans. Antennas Propagat., Vol. 40, No. 7, 782-790, 1992.
doi:10.1109/8.155743
45. Yang, H.-Y., J. A. Castaneda, and N. G. Alexopoulos, "Infinite phased arrays of microstrip antennas on generalized anisotropic substrate," Electromagnetics, Vol. 11, No. 1, 107-124, 1991.
doi:10.1080/02726349108908266