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1. INTRODUCTION

In the past few years, complex linear materials have gained much and
increasing attention in electromagnetic community, and among these
bianisotropic materials must be mentioned [1]. Bianisotropic linear
materials are characterized by four independent constitutive tensors,
and till now significant theoretical research progress has been achieved
concerning the electromagnetic characteristics and potential applica-
tions of some bianisotropic materials. For instance, the dyadic Green’s
function theory for source radiation and wave propagation in uniaxial
and helicoidal bianisotropic media [2–8], wave reflection and trans-
mission properties of multilayered bianisotropic slabs and their poten-
tial applications for making novel non-reflection coatings and filters
[9–15], the guided hybrid mode features in some bianisotropic waveg-
uides [16–24], the dispersion characteristics of bianisotropic microstrip
transmission lines and the effects of bianisotropic substrate and su-
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perstrate on the radiation of sources [25–28], the scattering from some
particular bianisotropic objects [29–31], the edge effect in bianisotropic
region [32, 33], and the macroscopic properties of bianisotropic mix-
tures as well as experimental investigations on the effective constitutive
parameters of uniaxial bianisotropic composites [34–39], et al. In these
studies the authors usually pay attention to the diverse chiral effects in
bianisotropic media. However, it should be emphasized that, in spite
of that both theoretical and experimental progress has been made on
the electromagnetic characteristics of bianisotropic materials recently,
there still remain many unsolved problems for further exploration.

It is known that the exponential matrix technique in spectral domain
has often been utilized for investigating the interaction of electromag-
netic waves with bi(an)isotropic media [3]. To some degree speaking,
such a technique is efficient and powerful to deal with most linear com-
plex materials, and it has been employed in the author’s previous study
and improved more recently [14, 28]. In this contribution, our atten-
tion is concentrated on the effects of chiral operation on the radiation
characteristics of a dipole antenna placed on some grounded multi-
layered bianisotropic substrates, and this chiral operation is realized
by stacking up a certain number of bianisotropic biaxial chiral plates
in a way of the consecutive principal axes of four constitutive tensors[
c(i)

]
(c = ε, µ, ξe, ξm) describing either right- or left-handed spirality,

or ranging the orientation of biasing magnetic field in the right- or
left-handed spirality in Faraday chiral plates. The bianisotropic chiral
substrates possessing such structural features can be regarded as the
typical cases of helicoidal bianisotropic media [7–12]. In the following
sections the mathematical treatment is based on the exponential ma-
trix technique in spectral domain, and the motivation for this study is
not only of academic importance, but also essential for the potential
applications of bianisotropic media.

2. THE GEOMETRY OF THE PROBLEM

The geometry of a grounded multilayered bianisotropic substrate is
shown in Fig. 1, in which an elementary dipole antenna J(R′) is placed
at the interface z = 0 along the x -direction, and the thickness of each
layer is denoted by d(1), · · · , d(i),

(∣∣D(i) −D(i−l)∣∣) , · · · , dN . Evidently,
this structure is two-dimensional and homogeneous in the y -direction.
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(a) (b)

Figure 1. The geometry of a grounded multilayered bianisotropic sub-
strate. (a) cross-section (b) the orientations of the principal axes of
constitutive tensors or the biasing magnetic field

The constitutive characteristics of each bianisotropic plate (i =
1, · · · , N) in an appropriate frequency range can be described by:

D
(i) =ε0

[
ε(i)

]
E

(i) +
√
µ0ε0

[
ξ(i)

]
H

(i) (1a)

B
(i) =µ0

[
µ(i)

]
H

(i) +
√
µ0ε0

[
η(i)

]
E

(i) (1b)

where
[
ε(i)

]
,
[
µ(i)

]
,
[
ξ(i)

]
, and

[
η(i)

]
are relative permittivity, perme-

ability, and cross coupling tensors of the ith layer, respectively. The
time dependence ejwt is assumed and suppressed throughout this pa-
per. With respect to the above Cartesian coordinate system in Fig. 1,
the four constitutive tensors of bianisotropic chiral plates in (1) should
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take the following 3× 3 matrix forms:

[
ε(i)

]
=

 ε
(i)
xx ε

(i)
xy 0

ε
(i)
yx ε

(i)
yy 0

0 0 ε
(i)
zz

 , [
µ(i)

]
=

µ
(i)
xx µ

(i)
xy 0

µ
(i)
yx µ

(i)
yy 0

0 0 µ
(i)
zz

 , (2a, b)

[
ξ(i)

]
=

 ξ
(i)
xx ξ

(i)
xy 0

ξ
(i)
yx ξ

(i)
yy 0

0 0 ξ
(i)
zz

 , [
η(i)

]
=

 η
(i)
xx η

(i)
xy 0

η
(i)
yx η

(i)
yy 0

0 0 η
(i)
zz

 , (2c, d)

and

ε(i)xx =ε(i)x cos2 θ(i)
e + ε(i)y sin2 θ(i)

e ,

ε(i)xy =ε(i)yx = (ε(i)y − ε(i)x ) sin θ(i)
e cos θ(i)

e ,

ε(i)yy =ε(i)x sin2 θ(i)
e + ε(i)y cos2 θ(i)

e ,

ε(i)zz =ε(i)z ,

µ(i)
xx =µ(i)

x cos2 θ(i)
m + µ(i)

y sin2 θ(i)
m ,

µ(i)
xy =µ(i)

yx = (µ(i)
y − µ(i)

x ) sin θ(i)
m cos θ(i)

m ,

µ(i)
yy =µ(i)

x sin2 θ(i)
m + µ(i)

y cos2 θ(i)
m ,

µ(i)
zz =µ(i)

z ,

ξ(i)xx =ξ(i)x cos2 θ(i)
em + ξ(i)y sin2 θ(i)

em,

ξ(i)xy =ξ(i)yx = (ξ(i)y − ξ(i)x ) sin θ(i)
em cos θ(i)

em,

ξ(i)yy =ξ(i)x sin2 θ(i)
em + ξ(i)y cos2 θ(i)

em,

ξ(i)zz =ξ(i)z ,

η(i)
xx =η(i)

x cos2 θ(i)
me + η(i)

y sin2 θ(i)
me,

η(i)
xy =η(i)

yx = (η(i)
y − η(i)

x ) sin θ(i)
me cos θ(i)

me,

η(i)
yy =η(i)

x sin2 θ(i)
me + η(i)

y cos2 θ(i)
me,

η(i)
zz =η(i)

z , (2e)

where θ(i)
e , θ

(i)
m , θ

(i)
em and θ

(i)
me ∈ [0◦,±360◦] are the orientation angles of

the principal axes of
[
ε(i)

]
,
[
µ(i)

]
,
[
ξ(i)

]
, and

[
η(i)

]
with respect to the

x -direction in x - y plane, respectively. The orientations of axes should
be in a right- or left-handed ( + : right; − : left) spirality and period-
ically in the z -direction. In (2) θ

(i)
e = θ

(i)
m = θ

(i)
em = θ

(i)
me just stands
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for the double chiralities case in bianisotropic chiral substrates, and
especially, when

[
ξ(i)

]
=

[
η(i)

]
= 0 reduces to the special case of mul-

tilayered chiral arrangement of a uniaxial or biaxial model [40]. On the
other hand, when the thickness of each layer d(i) � λ (the operating
wavelength) and c

(i)
x = c

(i−1)
x , c

(i)
y = c

(i−1)
y , c

(i)
z = c

(i−1)
z (c = ε, µ, ξ, η) ,

the stepwise variation will appear to be continuous, and under such cir-
cumstances the above structure can then be thought of as a smoothly
non-homogeneous medium with helicoidally varying properties [6–12].
Physically, all constitutive parameters of the bianisotropic substrate
above should be a function of the operating frequency and must be
within the confines of a realizable range, and [15]

j

[ [
ε(i)

]
−

[
ε(i)

]⊗ [
η(i)

]
−

[
η(i)

]⊗[
ξ(i)

]
−

[
ξ(i)

]⊗ [
µ(i)

]
−

[
µ(i)

]⊗
]

is positive semi-definite, here the superscript ⊗ denotes the double
operation of transpose and complex conjugation. It is known that
Faraday chiral composites (i.e., chiroferrites and chiroplasmas) are an
important group of bianisotropic materials, and in such composites
both gyrotropy and chirality can be introduced simultaneously [24,
27–30, 38, 39, 41, 42]. Correspondingly, four constitutive tensors in
(1) for chiroferrites can be written as

[
ε(i)

]
= ε(i)I,

[
ξ(i)

]
=

[
η(i)

]∗
= jκ(i)I,

[
µ(i)

]
=

µ
(i)
xx µ

(i)
xy µ

(i)
xz

µ
(i)
yx µ

(i)
yy µ

(i)
yz

µ
(i)
zx µ

(i)
zy µ

(i)
zz

 ,
i = 1, 2, · · · , N (3a)

and here chiroferrites are biased by static magnetic fields H
(i)
0 of ar-

bitrary orientation (ϕ(i)
0 , θ

(i)
0 ) [28], i.e.,

µ(i)
xx(ω) =µ(i)(ω) + [1− µ(i)(ω)] sin2 θ

(i)
0 cos2 ϕ(i)

0 ,

µ(i)
xy(ω) =[1− µ(i)(ω)] sinϕ(i)

0 cosϕ(i)
0 sin2 θ

(i)
0 − jκ(i)

c cos θ(i)
0 ,

µ(i)
xz(ω) =jκ(i)

c sinϕ(i)
0 sin θ(i)

0 + [1− µ(i)(ω)] sin θ(i)
0 cos θ(i)

0 cosϕ(i)
0 ,

µ(i)
yx(ω) =[1− µ(i)(ω)] sinϕ(i)

0 cosϕ(i)
0 sin2 θ

(i)
0 + jκ(i)

c cos θ(i)
0 ,

µ(i)
yy (ω) =µ(i)(ω) + [1− µ(i)(ω)] sin2 θ

(i)
0 sin2 ϕ

(i)
0 ,
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µ(i)
yz (ω) =− jκ(i)

c cosϕ(i)
0 sin θ(i)

0 + [1− µ(i)(ω)] sin θ(i)
0 cos θ(i)

0 sinϕ(i)
0 ,

µ(i)
zx(ω) =− jκ(i)

c sinϕ(i)
0 sin θ(i)

0 + [1− µ(i)(ω)] sin θ(i)
0 cos θ(i)

0 cosϕ(i)
0 ,

µ(i)
zy (ω) =jκ(i)

c cosϕ(i)
0 sin θ(i)

0 + [1− µ(i)(ω)] sin θ(i)
0 cos θ(i)

0 sinϕ(i)
0 ,

µ(i)
zz (ω) =1− [1− µ(i)(ω)] sin2 θ

(i)
0 ,

µ(i)(ω) =µ(i)
1 (ω)− jµ(i)

2 (ω), µ
(i)
1 (ω) = 1 +

ω
(i)
0 ω

(i)
m [ω(i)2

0 − ω2(1− α(i)2

m )]

F
(i)
m

,

µ
(i)
2 (ω) =

ωω
(i)
m α

(i)
m [ω(i)2

0 + ω2(1 + α
(i)2

m )]

F
(i)
m

,

κ(i)
c (ω) =κ(i)

c1 (ω)− jκ(i)
c2 (ω), κ

(i)
c1 (ω) = −ωω

(i)
m [ω(i)2

0 − ω2(1 + α
(i)2

m )]

F
(i)
m

,

κ
(i)
c2 =− 2ωmω

(i)
0 α

(i)
m ω2

F
(i)
m

, F (i)
m = [ω(i)2

0 − ω2(1 + α(i)2

m )]2 + 4(ωω(i)
0 α(i)

m )2,

ω =|γ|H(i)
0 , ω(i)

m = |γ|M (i)
s , (3b)

where M
(i)
s is the saturation magnetization of the chiroferrite; γ ,

the gyromagnetic ratio ( = −2.21 × 105 rad m/C ); α(i)
m , the Landau

damping coefficient and the loss is taken into account. Especially, when
the orientation of H(i)

0 is in the right- or left-handed spirality for the
given θ

(i)
0 (ϕ0 ∈ (0◦,±360◦) ), double chiralities are formed in the

multilayered chiroferrite substrate. While for chiroplasmas,

[
µ(i)

]
= µ(i)I,

[
ξ(i)

]
=

[
η(i)

]∗
= jκ(i)I,

[
ε(i)

]
=

 ε
(i)
xx ε

(i)
xy ε

(i)
xz

ε
(i)
yx ε

(i)
yy ε

(i)
yz

ε
(i)
zx ε

(i)
zy ε

(i)
zz

 ,
(4a)

According to the related form of
[
ε(i)

]
in [43] and after the rotation

of Cartesian coordinate system, we obtain

ε(i)xx(ω) =ε(i)1 (ω) + [ε(i)2 (ω)− ε(i)1 (ω)] sin2 ν(i) cos2 ψ(i),

ε(i)xy(ω) ={jg(i) sinψ(i) + [ε(i)2 (ω)− ε(i)1 (ω)] cosψ(i) cos ν(i)} sin ν(i),

ε(i)xz(ω) =− ig(i)(ω) cos ν(i) + [ε(i)2 (ω)− ε(i)1 (ω)] sinψ(i) cosψ(i) sin2 ν(i),
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ε(i)yx(ω) ={−jg(i) sinψ(i) + [ε(i)2 (ω)− ε(i)1 (ω)] cosψ(i) cos ν(i)} sin ν(i),

ε(i)yy (ω) =ε(i)1 sin2 ν(i) + ε
(i)
2 (ω) cos2 ν(i),

ε(i)yz (ω) ={jg(i) cosψ(i) + [ε(i)2 (ω)− ε(i)1 (ω)] sinψ(i) cos ν(i)} sin ν(i),

ε(i)zx(ω) =ig(i)(ω) cos ν(i) + [ε(i)2 (ω)− ε(i)1 (ω)] sinψ(i) cosψ(i) sin2 ν(i),

ε(i)zy (ω) ={−jg(i) cosψ(i) + [ε(i)2 (ω)− ε(i)1 (ω)] sinψ(i) cos ν(i)} sin ν(i),

ε(i)zz (ω) =ε(i)1 (ω) + [ε(i)2 (ω)− ε(i)1 (ω)] sin2 ν(i) sin2 ψ(i), (4b)

and ψ(i) and ν(i) are determined by the spherical angles, θ
(i)
0 and

ϕ
(i)
0 through

cosψ(i) =
sin θ(i)

0 cosϕ(i)
0√

sin2 θ
(i)
0 cos2 ϕ(i)

0 + cos2 θ(i)
0

, cos ν(i) = sin θ(i)
0 sinϕ(i)

0 ,

(4c)
where

ε
(i)
1 (ω) =ε(i)s −

ω
(i)2

p (ω − jτ (i)−1
)

ω[(ω − jτ (i)−1)2 − ω(i)2
c ]

, ε
(i)
2 (ω) = ε(i)s −

ω
(i)2

p

ω(ω − jτ (i)−1)
,

g(i)(ω) =− ω
(i)2

p ω
(i)
c

ω[(ω − jτ (i)−1)2 − ω(i)2
c ]

, (4d)

and ω
(i)
p =

√
(n(i)e2/ε0m∗) represents the plasma frequency; ω(i)

c =
eB

(i)
0 /m∗, the cyclotron frequency; n(i) , the carriers’ concentration;

e , the electron charge; m∗ , the electron effective mass (kg) (i.e.,
0.067 me for GaAs); me , the electron rest mass; B(i)

0 , the DC mag-
netizing field; ϕ(j) , the orientation angle of B(i)

0 in the x - y plane;
τ (i) , the momentum relaxation time of the semiconductor material;
and ε

(i)
s , the relative dielectric permittivity of the semiconductor. Ev-

idently, when the external DC magnetic field B
(i)
0 in each layer of chi-

roplasma substrate take the same orientation as in chiroferrite, double
chiralities can also be formed in the above multilayered substrate.
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3. THE FAR FIELD DISTRIBUTIONS

Introducing the Fourier transform domain defined by

ψ̃(kx, ky; z) =

+∞∫
−∞

+∞∫
−∞

ψ(x, y; z)ej(kxx+kyy)dxdy, (5a)

ψ(x, y; z) =

+∞∫
−∞

+∞∫
−∞

ψ̃(kx, ky; z)e−j(kxx+kyy)dkxdky, (5b)

into the following Maxwell’s equations:

∇×H(i) =jω{ε0[ε(i)]E(i) +
√
µ0ε0[ξ(i)]H

(i)}, (6a)

∇× E(i) =− jω{µ0[µ(i)]H(i) +
√
µ0ε0[η(i)]E(i)}, (6b)

and following a similar procedure used in [28], the transverse field
components in each layer of multilayered bianisotropic slabs can be
expressed as:

d

dz


Ẽ

(i)
x (kx, ky; z)

Ẽ
(i)
y (kx, ky; z)

H̃
(i)
x (kx, ky; z)

H̃
(i)
y (kx, ky; z)

 =


p
(i)
11 p

(i)
12 p

(i)
13 p

(i)
14

p
(i)
21 p

(i)
22 p

(i)
23 p

(i)
24

p
(i)
31 p

(i)
32 p

(i)
33 p

(i)
34

p
(i)
41 p

(i)
42 p

(i)
43 p

(i)
44



Ẽ

(i)
x (kx, ky; z)

Ẽ
(i)
y (kx, ky; z)

H̃
(i)
x (kx, ky; z)

H̃
(i)
y (kx, ky; z)

 .
(7)

where p
(i)
11 - p(i)

44 developed in [28] have some printing errors, and their
exact expressions are presented in APPENDIX 1 for the multilayered
case. Furthermore, the general solution to the vector differential Eq.(7)
can be found:

Ẽ
(i)
x (kx, ky; z)

Ẽ
(i)
y (kx, ky; z)

H̃
(i)
x (kx, ky; z)

H̃
(i)
y (kx, ky; z)



=


T

(i)
11 (z) T

(i)
12 (z) T

(i)
13 (z) T

(i)
14 (z)

T
(i)
21 (z) T

(i)
22 (z) T

(i)
23 (z) T

(i)
24 (z)

T
(i)
31 (z) T

(i)
32 (z) T

(i)
33 (z) T

(i)
34 (z)

T
(i)
41 (z) T

(i)
42 (z) T

(i)
43 (z) T

(i)
44 (z)



Ẽ

(i)
x (kx, ky; 0)

Ẽ
(i)
y (kx, ky; 0)

H̃
(i)
x (kx, ky; 0)

H̃
(i)
y (kx, ky; 0)

 (8)
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and here the matrix [T (i)(z)]4×4 is to relate the tangential electromag-
netic fields at the surface z to the tangential fields at the surface z = 0
within the ith layer, and in each layer [T (i)(z)]4×4 is calculated in the
exponential matrix form by means of Cayley-Hamilton theorem com-
bined with Muller’s root-finding technique. While the total transmis-
sion matrix [T (−D(N))]4×4 relating the boundary condition at z = 0
to that of z = −D(N) is calculated from [T (i)(z)]4×4 (i = 1, · · · , N) in
the form of serial matrix. At some extreme cases the above procedure
breaks down, however, such cases will not be met here.

Under the excitation of a dipole antenna on the multilayered bian-
isotropic chiral substrate, the far field distributions in the air region
(z > 0) can be derived using the saddle-point method, i.e., [3]

Eθ = j
2πψ̃1

R sin θ
e−jk0R, Eϕ = −j 2πψ̃2

R tan θ
e−jk0R (9a, b)

where

ψ̃1 =kxẼ(0)
x (kx, ky, 0) + kyẼ

(0)
y (kx, ky, 0), (9c)

ψ̃2 =kyẼ(0)
x (kx, ky, 0)− kxẼ(0)

y (kx, ky, 0), (9d)

and k0 = ω
√
µ0ε0 .

4. NUMERICAL RESULTS

Based on the mathematical formulation presented in the previous sec-
tion, computer codes have been developed for examining the effects of
chiral operation in a multilayered bianisotropic substrate on the ra-
diation characteristics of a dipole antenna on the top surface z = 0 .
The material parameters used for calculations are related to parame-
ters used in the literature, and the losses of the materials are neglected
here so that the attenuation by the bianisotropic substrates can not
mask effects produced by chiral operation. In addition, it should be
emphasized that the developed computer codes have been checked at
first and all figures in [28, 44] have been reproduced under the corre-
sponding conditions.
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At first, the normalized far-field patterns of a dipole antenna on a
ground-
ed 13-layer bianisotropic biaxial substrate are examined with respect
to different chiral operations. The thickness of each layer is assumed
to be d(i) = 0.2 mm (i = 1, · · · , 13) and the operating frequency is
f = 17.25 GHz.

In Fig. 2, both co- and cross-polarized components of the far-field are
symmetrical to the direction θ = θm = 0◦ . Here θm is the main beam
direction and its definition is the same as in [28, 44] (i.e., the beam
due to the co-polarized component of the electric field only, and for
x -directed dipole in the ϕ = 90◦ plane this implies Eϕ component).
Since the axes of the four constitutive tensors

[
c(i)

]
(c = ε, µ, ξ, η) in

case (a) are chosen to be in the same direction (θ(i)
e = θ

(i)
m = θ

(i)
em =

θ
(i)
me = 45◦) in the 13-layer substrate, it is just equivalent to the case

of an one-layer substrate. In addition, the cross coupling tensors
[
ξ(i)

]
and

[
η(i)

]
in Fig. 2(a) are supposed to be in the uniaxial form, i.e.,

ξ
(i)
x = ξ

(i)
y = η

(i)∗
x = η

(i)∗
y . In Fig. 2(b), the orientation of the axes

of
[
c(i)

]
(c = ε, µ, ξ, η) are chosen to be the same and in the right-

or left-handed spirality, respectively. The phase difference between
adjacent layers in the substrate are assumed to be: ∆θ(i)

e,m,em,me =
θ
(i+1)
e,m,em,me−θ(i)

e,m,em,me = ±45◦ . So double chiralities are introduced in
the 13-layer substrate, but

[
ξ(i)

]
and

[
η(i)

]
are also of uniaxial form.

It is obvious that the cross-polarized component Eθ in the ϕ = 90◦

plane is nearly zero (Eθ � Eϕ) . However, in the ϕ = 60◦(120◦) plane
the magnitude of Eθ is comparable to Eϕ (Fig. 3(c)). Numerical
calculation for case ∆θ(i)

e,m,em,me = ±60◦ has also been carried out
and a similar conclusion can be obtained. More generally, in Fig. 3(d)
the orientation of the axes of

[
c(i)

]
(c = ε, µ, ξ, η) is in the right-

and left-handed spiralities (
∣∣∣∆θ(i)

e,m,em,me

∣∣∣ = 45◦), respectively, but the

axis of
[
µ(i)

]
(
[
η(i)

]
) is not in concordance with that of

[
ε(i)

]
(
[
ξ(i)

]
) .

Since ξ
(i)
x (η(i)∗

x ) 
= ξ
(i)
y (η(i)∗

y ) 
= ξ
(i)
z (η(i)∗

z ),
[
ξ(i)

]
and

[
η(i)

]
are not of

uniaxial form, and they take the general form as shown as in (2). The
above numerical results show that for co-and cross-polarized far-field
components:

Eϕ(ϕ,±θ(i)
e,m,em,me,±ξ(i)x,y,z,±η(i)

x,y,z)

=Eϕ(180◦ − ϕ,∓θ(i)
e,m,em,me,∓ξ(i)x,y,z,∓η(i)

x,y,z), (10a)
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(a) ϕ = 90◦, ε(i)x = 2.0, ε(i)y = 2.35, ε(i)z = 3.5, µ(i)
x = 2.75, µ(i)

y =
2.25, µ(i)

z = 5.0, ξ
(i)
x = ξ

(i)
y = η

(i)∗
x = η

(i)∗
y = j0.2, ξ

(i)
z = η

(i)∗
z = j0.3

(*: the complex conjugation), θ(i)
e = θ

(i)
m = θ

(i)
em = θ

(i)
me = 45◦ .

(b) The parameters are the same as in (a), except that ξ(i)x = ξ
(i)
y =

η
(i)∗
x = η

(i)∗
y = ±j0.2, ξ

(i)
z = η

(i)∗
z = ±j0.3, θ

(i)
e = θ

(i)
m = θ

(i)
em = θ

(i)
me

= 0◦/± 45◦/± 90◦/± 135◦/± 180◦/± 225◦/± 270◦/± 315◦/± 360◦/±
45◦/± 90◦/± 135◦/± 180◦ .

Figure 2. Normalized radiation pattern for a dipole antenna on a 13-
layer bianisotropic chiral substrate. f = 17.25 GHz, d(i) = 0.2 mm,
i = 1, · · · , 13 , and
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(c) The parameters are the same as (b), except that ϕ = 60◦(120◦) .

(d) ϕ = 30◦(150◦), ε(i)x = 2.0, ε(i)y = 2.35, ε(i)z = 3.5, µ(i)
x =

2.75, µ(i)
y = 2.25, µ(i)

z = 5.0, ξ
(i)
x = η

(i)∗
x = ±j0.1, ξ

(i)
y = η

(i)∗
y =

±j0.2, ξ(i)z = η
(i)∗
z = ±j0.3, θ(i)

e = θ
(i)
em = −θ(i)

m = −θ(i)
me = 0◦/±45◦/±

90◦/ ± 135◦/ ± 180◦

/± 225◦/± 270◦/± 315◦/± 360◦/± 45◦/± 90◦/± 135◦/± 180◦ .

Figure 2. Normalized radiation pattern for a dipole antenna on a 13-
layer bianisotropic chiral substrate. f = 17.25 GHz, d(i) = 0.2 mm,
i = 1, · · · , 13 , and
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Eθ(ϕ,±θ(i)
e,m,em,me,±ξ(i)x,y,z,±η(i)

x,y,z)

=Eθ(180◦ − ϕ,∓θ(i)
e,m,em,me,∓ξ(i)x,y,z,∓η(i)

x,y,z), (10b)

This means that for any source excitation and in the given directions
(θ, ϕ) and (θ, 180◦−ϕ) either co- or cross-polarized components of the
radiation field are equal if such kind of chiral operation is performed:
reversing the spiral orientation of the axes of

[
c(i)

]
(c = ε, µ, ξ, η) and

the sign of the cross coupling tensors
[
ξ(i)

]
and

[
η(i)

]
(i.e., the signs

of chiralities parameters) simultaneously. It must be pointed out that
(10) has no relation to the operating frequency, the source place, or the
geometrical size of bianisotropic chiral substrate (i.e., the layer number
and thickness of each layer). (10) is also true for the bianisotropic
chiral superstrate-substrate structure or the infinite coupled dipole-
array excitation [45], but indeed not true when

[
ξ(i)

]
=

[
η(i)

]
= 0 .

On the other hand, various numerical tests prove that both operating
frequency and orientation angle of the axes of

[
c(i)

]
has no effect on

the main beam direction, and θm is always kept in the direction of 0◦

for the above constitutive model of the bianisotropic biaxial substrate.
Fig. 3 demonstrates the normalized far-field patterns of a dipole

antenna on a 13-layer chiroferrite substrate, and the thickness of each
layer of the substrate is assumed to be d(i) = 0.2 mm. The operating
frequency is f = 17.25 GHz, the permittivity tensors of chiroferrites[
ε(i)

]
= 12.6I , and the Landau damping effect is not considered here.

In Fig. 3(a), since the biased static magnetic fields H
(i)
0 take the

same orientation in x - y plane (θ(i)
0 = 90◦, ϕ(i)

0 = 45◦) in each layer
of substrates, it is just an one-layer substrate case and only one chi-
rality is introduced here. While in Figs. 3(b)(c) double chiralities are
introduced: one is caused by the right-handed spiral orientation of the
biasing H

(i)
0 denoting by the azimuthal bias angle {+ϕ(i)

0 } and the
other is due to the presentation of κ(i) . Comparing (c) with (b) it is
obvious that not only the relative level of Eϕ and Eθ but also the
main beam direction θm is changed with increasing κ(i) , and θm is
changed just nearly from −47.5◦ to +47.5◦ . In Figs. 3(d)(e), there
also exist double chiralities: the positive sign of κ(i) corresponds to
the azimuthal bias angles {+ϕ(i)

0 } representing the right-handed ori-
entation of H

(i)
0 , and the negative sign of κ(i) corresponds to the

left-handed orientation. In addition, in case (e) θ
(i)
0 is chosen to be

60◦ and 120◦ , respectively, so the orientation of H(i)
0 takes the general
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(a) ϕ = 90◦, M (i)
s µ0 = 0.275, ω(i)

0 /ω
(i)
m = 2.0, κ(i) = 0.4, θ(i)

0 =
90◦, ϕ(i)

0 = 45◦.

(b) ϕ = 90◦, M (i)
s µ0 = 0.275, ω(i)

0 /ω
(i)
m = 0.2, κ(i) = 0.1, θ(i)

0 =
90◦.

(c) The parameters are the same as (b), except that κ(i) = 0.5 .
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(d) ϕ = 90◦, M (i)
s µ0 = 0.275, ω(i)

0 /ω
(i)
m = 2.0, κ(i) = ±0.4, θ(i)

0 =
90◦, ϕ

(i)
0 = 0◦/± 60◦/± 120◦/± 180◦/± 240◦/± 300◦/± 360◦/± 60◦

/± 120◦/± 180◦/± 240◦/± 300◦/± 360◦ .

(e) ϕ = 35◦(145◦), M (i)
s µ0 = 0.275, ω(i)

0 /ω
(i)
m = 2.0, κ(i) = ±0.4,

θ
(i)
0 = 60◦(120◦), ϕ(i)

0 = 0◦/±60◦/±120◦/±180◦/±240◦/±300◦/±360◦

/± 60◦/± 120◦/± 180◦/± 240◦/± 300◦/± 360◦ .

Figure 3. Normalized radiation pattern for a dipole antenna on a 13-
layer chiroferrite substrate. f = 17.25 GHz,

[
ε(i)

]
= 12.6I, d(i) =

0.2 mm, α(i)
m = 0, i = 1, · · · , 13, and
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right- and left-handed spiralities. It is interesting to note that:

Eϕ(ϕ, θ(i)
0 ,±ϕ(i)

0 ,±κ(i)) =Eϕ(180◦ − ϕ, 180◦ − θ(i)
0 ,∓ϕ(i)

0 ,∓κ(i)), (11a)

Eθ(ϕ, θ
(i)
0 ,±ϕ(i)

0 ,±κ(i)) =Eθ(180◦ − ϕ, 180◦ − θ(i)
0 ,∓ϕ(i)

0 ,∓κ(i)), (11b)

This indicates that in the directions of (θ, ϕ) and (θ, 180◦ − ϕ) , Eϕ
and Eθ do not change for any source excitation if we take two chi-
ral operations: reversing the spiral orientation of the biasing magnetic
field H

(i)
0 and the sign of chirality parameters simultaneously. Also,

(11) has no relation to the operating frequency and the geometrical
parameters of the chiroferrite substrate, and it is also true for a chi-
roferrite superstrate-substrate structure. On the other hand, overall
pattern resharping can easily be achieved by changing the biased field
intensities as well as the orientation (ϕ(i)

0 , θ
(i)
0 ) in each substrate layer.

Furthermore, Fig. 4 shows the effects of the azimuthal bias angles
ϕ

(i)
0 of H(i)

0 on the main beam direction θm for a 13-layer chiroferrite
substrate (i = 1, · · · , 13) , and the operating frequency is assumed to
be f = 10 GHz.

In Figs. 4(a)–(f), the orientations of the biasing magnetic fields
H

(i)
0 is kept in the x - y plane, and the phase difference ∆ϕ(i,i−1)

0 =
ϕ

(i)
0 −ϕ

(i−1)
0 between two adjacent chiroferrite substrates is assumed to

be 30◦ and 60◦ , respectively. Cases (a)(b)(d) and (e) correspond to
the right-handed spirality, while (c) and (f) represent the left-handed
spirality. Obviously, with ϕ

(i)
0 increasing, θm changes rapidly and

sometimes continuously. Such phenomenon is mainly due to the strong
variation ofϕ(i)

0 in the z -direction. Under some circumstances, a
beam scanning over large angles can be achieved only by adjusting
the azimuthal angle ϕ

(i)
0 . For example, in Figs. 4(a)(b)(c) the posi-

tive scanning angle of the main beam nearly is +80◦ . Only reversing
the orientation of H(i)

0 can also result in the change of θm in a wide
range. When ∆ϕ(i,i−1)

0 = ±60◦ , very different tendencies are observed
by comparison of (d)(e)(f) with (a)(b)(c). To some degree speaking,
the scanning characteristics of the source are strongly governed by the
phase difference ∆ϕ(i,i−1)

0 . In addition, from (11) or numerical tests
it is proven that the main beam direction θm satisfies the following
relation:
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Figure 4. The main beam direction depending on the azimuthal bias
angle ϕ

(i)
0 for a dipole antenna on a 13-layer chiroferrite substrate.

f = 10 GHz,
[
ε(i)

]
= 12.6I, d(i) = 0.2 mm, ϕ = θ

(i)
0 = 90◦, M (i)

s µ0 =
0.275, ω

(i)
0 /ω

(i)
m = 0.1, and (a) κ(i) = 0.1, ϕ(i)

0 = ϕ
(i−1)
0 + 30◦(i =

1, · · · , 13) . (b) κ(i) = 0.4, ϕ(i)
0 = ϕ

(i−1)
0 + 30◦ . (c) κ(i) = 0.4, ϕ(i)

0 =
ϕ

(i−1)
0 −30◦ . (d) κ(i) = 0.1, ϕ(i)

0 = ϕ
(i−1)
0 +60◦ . (e) κ(i) = 0.4, ϕ(i)

0 =
ϕ

(i−1)
0 + 60◦ . (f) κ(i) = 0.4, ϕ(i)

0 = ϕ
(i−1)
0 − 60◦ .
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θm(ϕ, θ(i)
0 ,±ϕ(i)

0 ,±κ(i)) = θm(180◦−ϕ, 180◦− θ(i)
0 ,∓ϕ(i)

0 ,∓κ(i)). (12)

Fig. 5 depicts the main beam direction of a dipole antenna placed
on a 13-layer chiroferrite substrate with increasing frequency. Since
the magnitude of chirality parameter κ(i) used for calculation is small
and the range of operating frequency is not too wide, the dispersion
effect of κ(i) itself is neglected here.

Figure 5. The main beam direction as a function of operating fre-
quency for a dipole antenna on a 13-layer chiroferrite substrate.

[
ε(i)

]
= 15.1I, d(i) = 0.2 mm, ϕ = θ

(i)
0 = 90◦, M (i)

s µ0 = 0.275, ω(i)
0 /ω

(i)
m =

0.1(i = 1, · · · , 13), κ(i) = ±0.2, (a) ϕ
(i)
0 = 0. (b) ϕ

(i)
0 = ϕ

(i−1)
0 ± 60◦ .

In Fig. 5, it is assumed that the orientation of the biasing mag-
netic field H

(i)
0 in each layer of the chirostrip substrate is kept in the

x -direction in case (a), while for case (b), H(i)
0 is in the right- or left-

handed spirality, respectively. Under this condition, nearly converse
effects of the operating frequency on the main beam direction is ob-
served, and it is further demonstrated that the right- or left-handed
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orientation of H(i)
0 has significant effects on the main beam direction.

Finally, Fig. 6 shows the normalized far-field pattern of a dipole an-
tenna on a 13-layer lossless chiroplasma substrate, and its geometrical
size is chosen to be the same as above.

Figure 6. Normalized radiation pattern for a dipole antenna on a 13-
layer chiroplasma substrate. f = 17.25 GHz, ε

(i)
s = 12.5,

[
µ(i)

]
=

1.0I, d(i) = 0.2 mm, τ (i) = 0, i = 1, · · · , 13, ϕ = 90◦, ω(i)
c = 2ω(i)

p =
1.5408 × 1012 rad/s, κ(i) = ±0.4, θ(i)

0 = 90◦, ϕ
(i)
0 = 0◦/ ± 60◦/ ±

120◦/±180◦/±240◦/±300◦/±360◦/±60◦/±120◦/±180◦/±240◦/±
300◦/± 360◦ .

In Fig. 6, the orientation of the external biasing DC magnetic field
B

(i)
0 is in the x - y plane and in the right- and left-handed spirality,

respectively. So double chiralities are also introduced in the 13-layer
chiroplasma substrate. The above described numerical investigation
proves that

Eϕ(ϕ,±ϕ(i)
0 ,±κ(i)) =Eϕ(180◦ − ϕ,∓ϕ(i)

0 ,∓κ(i)), (13a)

Eθ(ϕ,±ϕ(i)
0 ,±κ(i)) =Eθ(180◦ − ϕ,∓ϕ(i)

0 ,∓κ(i)), (13b)

and the main beam direction

θm(ϕ,±ϕ(i)
0 ,±κ(i)) = θm(180◦ − ϕ,∓ϕ(i)

0 ,∓κ(i)). (13c)

When θ
(i)
0 
= 90◦ , (13) takes the general form of (11) and (12). A

pattern resharping is also achievable here and in many different ways,



172 Yin et al.

for instance, by changing the operating frequency, the geometrical size
of substrate, the source place, the bias field strength as well as its right-
or left-handed spiral orientation.

5. CONCLUSION

The generalized spectral-domain exponential matrix technique has
been applied to examine the combined effects of chiral operations in
multilayered bianisotropic substrate on the radiation characteristics of
a dipole antenna, and the bianisotropic substrate is assumed to possess
three different constitutive behaviors, respectively. Numerical investi-
gations have been performed to demonstrate various influences of dif-
ferent constitutive and geometrical parameters of the substrate on the
co- and cross-polarized far field components. Especially, some unique
relations have been found corresponding to different chiral operations,
which are also true for other cases of source excitation, such as infi-
nite coupled dipole array, etc. It is believed that the present study
can provide much insight into the physical characteristics of complex
helicoidal bianisotropic composites.
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APPENDIX 1:

In (7),

p
(i)
11 =− jk0

{
η(i)
yx +

1
D(i)
{Q(i)

1 [ε(i)zxµ
(i)
zz − ξ(i)zz (η(i)

zx + ky0)]

−µ(i)
yz (ε

(i)
zz η

(i)
zx + ε(i)zz ky0 − ε(i)zxη(i)

zz )}
}
,

p
(i)
12 =− jk0

{
η(i)
yy +

1
D(i)
{Q(i)

1 [ε(i)zyµ
(i)
zz − ξ(i)zz (η(i)

zy − kx0)]

−µ(i)
yz (ε

(i)
zz η

(i)
zy − ε(i)zz kx0 − ε(i)zyη(i)

zz )}
}
,

p
(i)
13 =− jk0η0

{
µ(i)
yx +

1
D(i)
{Q(i)

1 [µ(i)
zz (ξ

(i)
zx − ky0)− ξ(i)zz µ(i)

zx ]



The effects of chiral operation in bianisotropic substrates 173

−µ(i)
yz [ε

(i)
zzµ

(i)
zx − η(i)

zz (ξ(i)zx − ky0)]}
}
,

p
(i)
14 =− jk0η0

{
µ(i)
yy +

1
D(i)
{Q(i)

1 [µ(i)
zz (ξ

(i)
zy + kx0)− ξ(i)zz µ(i)

zy ]

−µ(i)
yz [ε

(i)
zzµ

(i)
zy − η(i)

zz (ξ(i)zy + kx0)]}
}
,

p
(i)
21 =jk0

{
η(i)
xx +

1
D(i)
{Q(i)

2 [ε(i)zxµ
(i)
zz − ξ(i)zz (η(i)

zx + ky0)]

−µ(i)
xz(ε

(i)
zz η

(i)
zx + ε(i)zz ky0 − ε(i)zxη(i)

zz )}
}
,

p
(i)
22 =jk0

{
η(i)
xy +

1
D(i)
{Q(i)

2 [ε(i)zyµ
(i)
zz − ξ(i)zz (η(i)

zy − kx0)]

−µ(i)
xz(ε

(i)
zz η

(i)
zy − ε(i)zz kx0 − ε(i)zyη(i)

zz )}
}
,

p
(i)
23 =jk0η0

{
µ(i)
xx +

1
D(i)
{Q(i)

2 [µ(i)
zz (ξ

(i)
zx − ky0)− ξ(i)zz µ(i)

zx ]

−µ(i)
xz [ε

(i)
zzµ

(i)
zx − η(i)

zz (ξ(i)zx − ky0)]}
}
,

p
(i)
24 =jk0η0

{
µ(i)
xy +

1
D(i)
{Q(i)

2 [µ(i)
zz (ξ

(i)
zy + kx0)− ξ(i)zz µ(i)

zy ]

−µ(i)
xz [ε

(i)
zzµ

(i)
zy − η(i)

zz (ξ(i)zy + kx0)]}
}
,

p
(i)
31 =jk0

{
ε(i)yx +

1
D(i)
{Q(i)

3 [ε(i)zz (−η(i)
zx − ky0) + η(i)

zz ε
(i)
zx ]

−ε(i)yz [µ(i)
zz ε

(i)
zx + ξ(i)zz (−η(i)

zx − ky0)]}
}
/η0,

p
(i)
32 =jk0

{
ε(i)yy +

1
D(i)
{Q(i)

3 [ε(i)zz (−η(i)
zy + kx0) + η(i)

zz ε
(i)
zy ]

−ε(i)yz [µ(i)
zz ε

(i)
zy + ξ(i)zz (−η(i)

zy + kx0)]}
}
/η0,

p
(i)
33 =− jk0

{
−ξ(i)yx +

1
D(i)
{Q(i)

3 [µ(i)
zxε

(i)
zz + η(i)

zz (−ξ(i)zx + ky0)]

−ε(i)yz (−µ(i)
zz ξ

(i)
zx + µ(i)

zz ky0 + µ(i)
zxξ

(i)
zz )}

}
,

p
(i)
34 =− jk0

{
−ξ(i)yy +

1
D(i)
{Q(i)

3 [µ(i)
zyε

(i)
zz + η(i)

zz (−η(i)
zy − kx0)]

−ε(i)yz (−µ(i)
zz ξ

(i)
zy − µ(i)

zz kx0 + µ(i)
zy ξ

(i)
zz )}

}
,
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p
(i)
41 =− jk0

{
ε(i)xx +

1
D(i)
{Q(i)

4 [ε(i)zz (−η(i)
zx − ky0) + η(i)

zz ε
(i)
zx ]

−ε(i)xz [µ(i)
zz ε

(i)
zx + η(i)

zz (−ξ(i)zx − ky0)]}
}
/η0,

p
(i)
42 =− jk0

{
ε(i)xy +

1
D(i)
{Q(i)

4 [ε(i)zz (−η(i)
zy + kx0) + η(i)

zz ε
(i)
zy ]

−ε(i)xz [µ(i)
zz ε

(i)
zy + ξ(i)zz (−η(i)

zy + kx0)]}
}
/η0,

p
(i)
43 =jk0

{
−ξ(i)xx +

1
D(i)
{Q(i)

4 [µ(i)
zxε

(i)
zz + η(i)

zz (−ξ(i)zx + ky0)]

−ε(i)xz(−µ(i)
zz ξ

(i)
zx + µ(i)

zz ky0 + µ(i)
zxξ

(i)
zz )}

}
,

p
(i)
44 =jk0

{
−ξ(i)xy +

1
D(i)
{Q(i)

4 [µ(i)
zyε

(i)
zz + η(i)

zz (−ξ(i)zy − kx0)]

−ε(i)xz(−µ(i)
zz ξ

(i)
zy − µ(i)

zz kx0 + µ(i)
zy ξ

(i)
zz )}

}
, (A1)

where kx0 = kx/k0, ky0 = ky/k0, k0 = ω
√
µ0ε0, Q

(i)
1 = −kx0 −

η
(i)
yz , Q

(i)
2 = −ky0− η(i)

xz , Q
(i)
3 = −kx0 + ξ

(i)
yz , Q

(i)
4 = −ky0 + ξ

(i)
xz , D(i) =

ε
(i)
zzµ

(i)
zz − ξ(i)zz η(i)

zz .
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