Vol. 170

Latest Volume
All Volumes
All Issues
2021-06-03

Surface Electromagnetic Waves at Gradual Interfaces Between Lossy Media

By Igor I. Smolyaninov
Progress In Electromagnetics Research, Vol. 170, 177-186, 2021
doi:10.2528/PIER21043006

Abstract

A low loss propagating electromagnetic wave is shown to exist at a gradual interface between two lossy conductive media. Such a surface wave may be guided by a seafloor-seawater interface and it may be used in radio communication and imaging underwater. It should allow communication distances of the order of 500 m at 10 kHz along a sandy seabed. Similar surface waves may also be guided by various tissue boundaries inside a human body. For example, such surface wave solutions may exist at planar interfaces between skull bones and grey matter inside a human head at 6 GHz.

Citation


Igor I. Smolyaninov, "Surface Electromagnetic Waves at Gradual Interfaces Between Lossy Media," Progress In Electromagnetics Research, Vol. 170, 177-186, 2021.
doi:10.2528/PIER21043006
http://jpier.org/PIER/pier.php?paper=21043006

References


    1. Rayleigh, L., "On waves propagated along the plane surface of an elastic solid," Proceeding of the London Mathematical Society\, Vol. s1-17, No. 1, 4-11, 1885.
    doi:10.1112/plms/s1-17.1.4

    2. Sommerfeld, A. N., "Propagation of waves in wireless telegraphy," Annalen der Physik, Vol. 28, 665-737, 1909.
    doi:10.1002/andp.19093330402

    3. Love, A. E. H., "Some problems of geodynamics," Nature, Vol. 89, 471-472, 1912.

    4. Wait, J. R., "Launching a surface wave over the earth," Electronics Letters, Vol. 3, No. 9, 396-397, 1967.
    doi:10.1049/el:19670307

    5. Schelkunoff, S. A., Electromagnetic Waves, D. Van Nostrand Company, Inc., New York, NY, 1943.

    6. Collin, R. E., Field Theory of Guided Waves, IEEE Press-Wiley, New York, NY, 1991.

    7. Zayats, A. V., I. I. Smolyaninov, and A. Maradudin, "Nano-optics of surface plasmon-polaritons," Physics Reports, Vol. 408, 131-314, 2005.
    doi:10.1016/j.physrep.2004.11.001

    8. Oruganti, S. K., F. Liu, D. Paul, J. Liu, J. Malik, K. Feng, H. Kim, Y. Liang, T. Thundat, and F. Bien, "Experimental realization of Zenneck type wave-based non-radiative, non-coupled wireless power transmission," Scientific Reports, Vol. 10, 925, 2020.
    doi:10.1038/s41598-020-57554-1

    9. Alibakhshikenari, M., B. S. Virdee, P. Shukla, C. H. See, R. A. Abd-Alhameed, F. Falcone, and E. Limiti, "Improved adaptive impedance matching for RF front-end systems of wireless transceivers," Scientific Reports, Vol. 10, 14065, 2020.
    doi:10.1038/s41598-020-71056-0

    10. Limiti, E., F. Falcone, R. A. Abd-Alhameed, B. S. Virdee, M. Alibakhshikenari, and C. H. See, "Impedance matching network based on metasurface (2-D metamaterials) for electrically small antennas," 2020 IEEE International Symposium on Antennas and Propagation and North American Radio Science Meeting (2020 IEEE AP-S/URSI), 1953-1954, Montreal, Canada.

    11. Alibakhshikenari, M., B. S. Virdee, C. H. See, R. A. Abd-Alhameed, F. Falcone, and E. Limiti, "Metasurface for controlling polarization of scattered EM waves," 4th Australian Microwave Symposium, Sydney, Australia, 2020.

    12. Alibakhshikenari, M., B. S. Virdee, C. H. See, R. A. Abd-Alhameed, F. Falcone, and E. Limiti, "Automated reconfigurable antenna impedance for optimum power transfer," 2019 IEEE Asia-Pacific Microwave Conference (APMC), 1461-1463, Singapore, 2019.

    13. Alibakhshikenari, M., B. S. Virdee, C. H. See, R. A. Abd-Alhameed, F. Falcone, and E. Limiti, "Energy harvesting circuit with high RF-to-DC conversion efficiency," 2020 IEEE International Symposium on Antennas and Propagation and North American Radio Science Meeting (2020 IEEE AP-S/URSI), 1299-1300, Montreal, Canada, 2020.
    doi:10.1109/IEEECONF35879.2020.9329604

    14. Alibakhshikenari, M., et al., "Impedance bandwidth improvement of a planar antenna based on metamaterial-inspired T-matching network," IEEE Access, Vol. 9, 67916-67927, 2021.
    doi:10.1109/ACCESS.2021.3076975

    15. Alibakhshikenari, M., et al., "A comprehensive survey of metamaterial transmission-line based antennas: Design, challenges, and applications," IEEE Access, Vol. 8, 144778-144808, 2020.
    doi:10.1109/ACCESS.2020.3013698

    16. Alibakhshikenari, M., et al., "A comprehensive survey of various decoupling mechanisms with focus on metamaterial and metasurface principles applicable to SAR and MIMO antenna systems," IEEE Access, Vol. 8, 192965-193004, 2020.
    doi:10.1109/ACCESS.2020.3032826

    17. Smolyaninov, I. I., Q. Balzano, C. C. Davis, and D. Young, "Surface wave based underwater radio communication," IEEE Antennas and Wireless Propagation Letters, Vol. 17, 2503-2507, 2018.
    doi:10.1109/LAWP.2018.2880008

    18. Landau, L. D. and E. M. Lifshitz, Quantum Mechanics: Non-relativistic Theory, Vol. 3, No. 45, Elsevier, 2013.

    19. Muller, H., T. von Dobeneck, C. Hilgenfeldt, B. SanFilipo, D. Rey, and B. Rubio, "Mapping the magnetic susceptibility and electric conductivity of marine surficial sediments by benthic EM profiling," Geophysics, Vol. 77, 1JF-Z19, 2012.

    20. Numerov, B. V., "A method of extrapolation of perturbations," Monthly Notices of the Royal Astronomical Society, Vol. 84, 592-601, 1924.
    doi:10.1093/mnras/84.8.592

    21., http://www.fcc.gov/general/body-tissue-dielectric-parameters..

    22. Richtsmeier, J. T. and K. Flaherty, "Hand in glove: Brain and skull in development and dysmorphogenesis," Acta Neuropathol., Vol. 125, 469-489, 2013.
    doi:10.1007/s00401-013-1104-y

    23. Wong, M. W. N., L. Qin, K. M. Lee, and K. S. Leung, "Articular cartilage increases transition zone regeneration in bone-tendon junction healing," Clin. Orthop. Relat. Res., Vol. 467, 1092-1100, 2009.
    doi:10.1007/s11999-008-0606-8