Vol. 157
Latest Volume
All Volumes
PIER 181 [2024] PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2016-10-10
Analysis of the Nicolson-Ross-Weir Method for Characterizing the Electromagnetic Properties of Engineered Materials
By
Progress In Electromagnetics Research, Vol. 157, 31-47, 2016
Abstract
A method for predicting the behavior of the permittivity and permeability of an engineered material by examining the measured S-parameters of a material sample is devised, assuming that the sample is lossless and symmetric. The S-parameter conditions under which the material parameters extracted using the Nicolson-Ross-Weir method may be associated with a lossless homogeneous material are described. Also, the relationship between the signs of the real and imaginary parts of the permittivity and permeability are determined, both when the extracted material parameters are real and when they are complex. In particular, the conditions under which metamaterials exhibit double-negative properties may be predicted from the S-parameters of a metamaterial sample. The relationships between material characteristics and the S-parameters should prove useful when synthesizing materials to have certain desired properties. Examples, both from experiment and simulation, demonstrate that the relationships may be used to understand the behavior of several different categories of engineered materials, even when the materials have appreciable loss.
Citation
Edward J. Rothwell, Jonathan L. Frasch, Sean M. Ellison, Premjeet Chahal, and Raoul O. Ouedraogo, "Analysis of the Nicolson-Ross-Weir Method for Characterizing the Electromagnetic Properties of Engineered Materials," Progress In Electromagnetics Research, Vol. 157, 31-47, 2016.
doi:10.2528/PIER16071706
References

1. Nicolson, A. M. and G. F. Ross, "Measurement of the intrinsic properties of materials by timedomain techniques," IEEE Trans. Instrum. Meas., Vol. 19, No. 4, 377-382, 1970.
doi:10.1109/TIM.1970.4313932

2. Weir, W. B., "Automatic measurement of complex dielectric constant and permeability at microwave frequencies," Proc. IEEE, Vol. 62, No. 1, 33-36, 1974.
doi:10.1109/PROC.1974.9382

3. Baker-Jarvis, J., M. D. Janezic, J. H. Grosvenor, and R. G. Geyer, Transmission/reflection and short-circuit line methods for measuring permittivity and permeability, Tech. Note 1355, National Institute of Standards and Technology, Dec. 1993.

4. Chen, L. F., C. K. Ong, C. P. Neo, V. V. Varadan, and V. K. Varadan, Microwave Electronics: Measurement and Materials Characterization, John Wiley & Sons Ltd., 2004.
doi:10.1002/0470020466

5. Morales, C., J. Dewdney, S. Pal, S. Skidmore, K. Stojak, H. Srikanth, T. Weller, and J. Wang, "Tunable magneto-dielectric polymer nanocomposites for microwave applications," IEEE Trans. Microw. Theory Tech., Vol. 59, No. 2, 302-310, 2011.
doi:10.1109/TMTT.2010.2092788

6. Balaabed, B., J. L. Wojkiewicz, S. Lamoun, N. El Kamchi, and T. Lasri, "Synthesis and characterization of hybrid conducting composites based on polyaniline/magnetite fillers with improved microwave absorption properties," J. Alloys and Compounds, Vol. 527, 137-144, Jun. 25, 2012.

7. Soleimani, H., Z. Abbas, N. Yahya, H. Soleimani, and M. Y. Ghotbi, "Determination of complex permittivity and permeability of lanthanum iron garnet lled PVDF-polymer composite using rectangular waveguide and Nicholson-Ross-Weir (NRW) method at X-band frequencies," Measurement, Vol. 45, 1621-1625, 2012.
doi:10.1016/j.measurement.2012.02.014

8. Wang, L., R. Zhou, and H. Xin, "Microwave (8–50 GHz) characterization of multiwalled carbon nanotube papers using rectangular waveguides," IEEE Trans. Microw. Theory Tech., Vol. 56, No. 2, 499-506, 2008.
doi:10.1109/TMTT.2007.914627

9. Katsounaros, A., K. Z. Rajab, Y. Hao, M. Mann, and W. I. Milne, "Microwave characterization of vertically aligned multiwalled carbon nanotube arrays," Applied Phys. Lett., Vol. 98, 203105/1-203105/3, 2011.

10. Havrilla, M. J. and D. P. Nyquist, "Electromagnetic characterization of layered materials via direct and de-embed methods," IEEE Trans Inst. Meas., Vol. 55, No. 1, 158-163, 2006.
doi:10.1109/TIM.2005.861249

11. Ziolkowski, R. W., "Design, fabrication, and testing of double negative metamaterials," IEEE Trans. Ant. Propagat., Vol. 51, No. 7, 1516-1529, 2003.
doi:10.1109/TAP.2003.813622

12. Alu, A., "First-principles homogenization theory for periodic metamaterials," Phys. Rev. B, Vol. 84, 075153/1-075153/18, 2010.

13. Hasar, U. C., J. J. Barroso, C. Sabah, I. Y. Ozbek, Y. Kaya, D. Dal, and T. Aydin, "Retrieval of effective electromagnetic parameters of isotropic metamaterials using reference-plane invariant expressions," Progress In Electromagnetics Research, Vol. 132, 425-441, 2012.
doi:10.2528/PIER12072412

14. Karamanos, T. D., A. I. Dimitriadis, and N. V. Kantartzis, "Compact double-negative metamaterials based on electric and magnetic resonators," IEEE Ant. Wireless Propag. Lett., Vol. 11, 480-483, 2012.
doi:10.1109/LAWP.2012.2197170

15. Majid, H. A., M. K. A. Rahim, and T. Masri, "Microstrip antenna’s gain enhancement using left-handed metamaterial structure," Progress In Electromagnetics Research M, Vol. 8, 235-247, 2009.
doi:10.2528/PIERM09071301

16. Singhal, P. K. and B. Garg, "Design and characterization of compact microstrip patch antenna using `split ring' shaped metamaterial structure," International Journal of Electrical and Computer Engineering, Vol. 2, No. 5, 655-662, 2012.

17. Zani, M. Z. M., M. H. Jusoh, A. A. Sulaiman, N. H. Baba, R. A. Awang, and M. F. Ain, "Circular patch antenna on metamaterial," Intl. Conf. on Electronic Devices, Systems and Applications (ICEDSA), 313-316, Kuala Lumpur, Malaysia, April 11-14, 2010.

18. Crowgey, B. R., J. Tang, E. J. Rothwell, B. Shanker, and L. C. Kempel, "A waveguide verification standard design procedure for the microwave characterization of magnetic materials," Progress In Electromagnetics Research, Vol. 150, 29-40, 2015.
doi:10.2528/PIER14100504

19. Wang, Y., Z. Duan, X. Tang, Z. Wang, Y. Zhang, J. Feng, and Y. Gong, "All-metal metamaterial slow-wave structure for high-power sources with high efficiency," Applied Physics Letters, Vol. 107, No. 15, 1, Oct. 2015.

20. Faraji, H. S., G. Atmatzakis, M. F. Su, and C. G. Christodoulou, "Creating double negative index metallic materials for HPM applications," Proc. AMEREM 2014, ID 124, Albuquerque, NM, Jul. 27-31, 2014.

21. Arslanagic, S., T. V. Hansen, N. A. Mortensen, A. H. Gregersen, O. Sigmund, R. W. Ziolkowski, and O. Breinbjerg, "A review of the scattering-parameter extraction method with clarification of ambiguity issues in relation to metamaterial homogenization," IEEE Antennas and Propagation Magazine, Vol. 55, No. 2, 91-106, 2013.
doi:10.1109/MAP.2013.6529320

22. Sihvola, A., "Metamaterials in electromagnetics," Metamaterials, Vol. 1, No. 1, 2-11, 2007.
doi:10.1016/j.metmat.2007.02.003

23. Helszajin, J., The Stripline Circulator: Theory and Practice, John Wiley & Sons, 2008.
doi:10.1002/9780470264201

24. Ouedraogo, R. O., Topology optimization of metamaterials and their applications to RF component design, Ph.D. Dissertation, Michigan State University, East Lansing, MI, May 2011.

25. Ouedraogo, R. O., E. J. Rothwell, A. R. Diaz, K. Fuchi, and J. Tang, "Waveguide band-stop filter design using optimized pixelated inserts," Microwave and Optical Technology Letters, Vol. 55, No. 1, 141-143, 2013.
doi:10.1002/mop.27246