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Analysis of the Nicolson-Ross-Weir Method for Characterizing
the Electromagnetic Properties of Engineered Materials
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Abstract—A method for predicting the behavior of the permittivity and permeability of an engineered
material by examining the measured S-parameters of a material sample is devised, assuming that the
sample is lossless and symmetric. The S-parameter conditions under which the material parameters
extracted using the Nicolson-Ross-Weir method may be associated with a lossless homogeneous material
are described. Also, the relationship between the signs of the real and imaginary parts of the permittivity
and permeability are determined, both when the extracted material parameters are real and when they
are complex. In particular, the conditions under which metamaterials exhibit double-negative properties
may be predicted from the S-parameters of a metamaterial sample. The relationships between material
characteristics and the S-parameters should prove useful when synthesizing materials to have certain
desired properties. Examples, both from experiment and simulation, demonstrate that the relationships
may be used to understand the behavior of several different categories of engineered materials, even
when the materials have appreciable loss.

1. INTRODUCTION

The Nicolson-Ross-Weir (NRW) method has, for more than forty years, been a standard technique for
measuring the permittivity and permeability of homogeneous, isotropic materials [1–4]. The method is
robust to most common sources of experimental error, and utilizes closed form expressions for the desired
material properties that are computed from measured S-parameters. Recently, the NRW method has
also been applied to manufactured materials, notably polymer composites with magnetic inclusions [5–
7], but also more exotic engineered materials such as carbon nanotube films [8, 9], and composite layered
dielectrics [10]. Particularly interesting is the use of the NRW method as a homogenization method
for metamaterials and for studying metamaterial elements [11]. Although this approach has some
difficulties [12, 13], it has been used to great effect to characterize the metamaterial elements used in
many novel antennas [13–17].

Because the NRW method relies on closed-form expressions, it is possible to perform an analysis
to predict the behavior of the extracted material parameters by directly examining the measured
S-parameters. For general materials, these expressions are too complicated to deduce any simple
relationships. However, if the engineered material is assumed to be lossless, isotropic, and symmetric,
some very important properties of the extracted material parameters can be easily deduced. In
particular, it is possible to tell the circumstances under which the extracted material parameters may
be interpreted as arising from a lossless homogeneous material. It is also possible to determine the
relationship between the signs of the real and imaginary parts of ε and μ when the extracted material
parameters are either real or complex. These characteristics are very useful when synthesizing materials
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to have certain properties, since it is possible to place constraints on the S-parameters in order to achieve
a certain desired material behavior.

Although most engineered materials are not lossless, some interesting structures are made purely
from metallic elements, and may be approximated as lossless. For instance, the magnetic waveguide
material standard described in [18] is metallic. Some of the basic observations described here were
first identified in the analysis of that structure. Also, some newer metamaterials, particularly those
designed for high power purposes, are constructed entirely of metal [19, 20]. Although the analysis
in this paper is only valid for lossless structures, it can still be used to understand and predict the
behavior of engineered materials with low to moderate loss. To demonstrate this, a metamaterial
insert is considered in Section 6 that has appreciable loss near resonance. Other examples include a
layered material and a waveguide aperture. These results all demonstrate that the analysis presented
here is useful for understanding the properties of engineered materials based on the behavior of their
S-parameters.

In brief, the purpose of this paper is to establish a relationship between the S-parameters of
a measured system, and the properties of the permittivity and permeability extracted from the S-
parameters using NRW. The conditions on the S-parameters for which the imaginary parts of the
extracted material parameters are zero are established. The conditions on the S-parameters that
determine the signs of both the real and imaginary parts of the extracted material parameters are
also determined. In the present study, the S-parameters are assumed to those of a lossless, symmetric,
reciprocal 2-port network.

The structure of the paper is as follows. Section 2 provides an overview of NRW, and gives the
closed form extraction equations for the most common implementations: free-space systems, TEM
waveguiding systems, and rectangular waveguide systems. Section 3 provides a derivation of the desired
conditions on the S-parameters. Section 4 examines a numerical example of a layered material in a TEM
waveguiding system, and demonstrates how the S-parameters can be used to predict the behavior of
the extracted material parameters. Section 5 uses S-parameter measurements of an iris in a rectangular
waveguide to validate with experimental data the relationships determined in Section 3. Section 6
shows that the relationships can be helpful when characterizing metamaterial structures, even when
those structures have nonzero loss, by considering simulations of a metamaterial insert in a rectangular
waveguide. Finally, Section 7 provides a summary and a discussion of applying the relationships in
practical situations.

2. THE NICOLSON-ROSS-WEIR METHOD

The NRW method is based on measuring the reflection from, and transmission through, a homogeneous
sample of isotropic material under specified illumination conditions. The material has complex
permittivity ε(ω) = εr(ω)ε0 = ε′(ω) − jε′′(ω) and permeability μ(ω) = μr(ω)μ0 = μ′(ω) − jμ′′(ω)
and occupies the region between the planes z = 0 and z = d, while the regions z < 0 and z > d
are assumed to be free space. The sample is illuminated by a wave originating from z < 0. Three
specific implementations are contemplated. In the first, the material is illuminated in free space by
either a parallel or perpendicular-polarized plane wave that is incident at an angle θ0 from the normal
to the material. In this case the material is assumed to be infinite in the x and y-directions. In the
second implementation, the material occupies a guided wave structure that is operated in the TEM
mode, such as a coaxial cable or a stripline. In this case it is assumed that the material completely
fills the cross section of the structure, and that only the TEM mode is present in all regions. In the
third implementation, the material occupies a guiding wave structure with either a single TE or TM
mode present in all regions. In this study, the specific case of a TE10 mode in a rectangular waveguide
of width a and height b is considered. The goal of the NRW method is to determine ε and μ using
measurements of the reflection coefficient (S11) and the transmission coefficient (S21), as defined as the
ratio of reflected or transmitted transverse electric field to incident transverse electric field at the planes
of the material sample.

In all three cases the S-parameters may be written as

S11 =
(1 − P 2)Γ
1 − P 2Γ2

, S21 =
(1 − Γ2)P
1 − P 2Γ2

. (1)
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Here P is the propagation factor given by

P = e−jkzd (2)

where kz is the z-component of the propagation vector defined through

k2
z = k2 − κ2. (3)

Here k = ω
√

με is the wavenumber in the material, and κ = 0 for TEM guided-wave systems,
κ = k0 sin θ0 for free-space systems where k0 = ω

√
μ0ε0, and κ = π/a for TE10-mode rectangular

waveguide systems. Additionally, Γ is the interfacial reflection coefficient given by

Γ =
Z − Z0

Z + Z0
. (4)

For TEM guided-wave systems, Z = η and Z0 = η0, where η =
√

μ/ε and η0 =
√

μ0/ε0. For TE10-mode
rectangular waveguide systems, Z = ωμ/kz and Z0 = ωμ0/kz0, where k2

z0 = k2
0 − κ2. For the free-space

method the transverse wave impedances are

Z =

⎧⎪⎨
⎪⎩

kη

kz
, ⊥ -pol,

kzη

k
, ‖ -pol,

Z0 =

{ η0

cos θ0
, ⊥ -pol,

η0 cos θ0, ‖ -pol.
(5)

The NRW method was proposed in the original work of Nicolson and Ross [1] and of Weir [2].
Begin by defining intermediate quantities

V1 = S21 + S11 =
P + Γ
1 + ΓP

, V2 = S21 − S11 =
P − Γ
1 − ΓP

. (6)

The quantities P and Γ may be determined in terms of the measured quantities S11 and S21 by
rearranging these expressions. First P is eliminated from the equations, resulting in a quadratic equation
for Γ,

Γ2 − 2ΓX + 1 = 0, (7)

where

X =
1 − V1V2

V1 − V2
=

1 − S2
21 + S2

11

2S11
. (8)

The solution is
Γ = X + s1

√
X2 − 1, (9)

where s1 = ±1. The sign ambiguity is usually resolved by assuming that the material is passive, since
only one choice of sign satisfies the inequality |Γ| ≤ 1. Once Γ is determined, P is easily found as

P =
V1 − Γ
1 − V1Γ

= |P |ejφ, (10)

where −π < φ ≤ π. Equating Eq. (10) to Eq. (2) and defining the dimensionless quantity k̄z = kz/k0,
kz is found by taking the natural logarithm:

k̄z =
n − φ

2π

d/λ0
+ j

ln |P |/2π
d/λ0

. (11)

Here λ0 = f/c is the free-space wavelength. This equation reveals one of the known difficulties with
the NRW method. The integer n defines the branch of the log function. Its value is not known a priori,
but is related to the electrical thickness of the sample. Since the material parameters are unknown, n
may be difficult to determine unless some test against known physics is employed, such as ε′′ > 0 for
passive materials. For engineered materials, however, this test may not be applicable. The reference [21]
presents a detailed discussion of this problem with suggestions for its resolution.

With k̄z known, μ and ε are determined as follows. First define

F =
1 − Γ
1 + Γ

. (12)
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Then, for TEM waveguiding systems,

εr = k̄zF, μr =
k̄z

F
. (13)

Otherwise, compute
k̄2 = k̄2

z + κ̄2, (14)

where κ̄ = κ/k0. Then, for a TE10 rectangular waveguide system

εr = k̄2 k̄z0F

k̄z
, μr =

k̄z

k̄z0F
, (15)

where k̄z0 = kz0/k0. For a free-space system with perpendicular polarization,

εr =
k̄2F cos θ0

k̄z
, μr =

k̄z

F cos θ0
. (16)

Finally, for a free-space system with parallel polarization,

εr =
k̄zF

cos θ0
, μr =

k̄2 cos θ0

k̄zF
. (17)

Note that for a free space system with normal incidence (θ0 = 0), the equations for μr and εr reduce to
those of a TEM system.

3. NRW FOR A LOSSLESS, RECIPROCAL, SYMMETRIC ENGINEERED
MATERIAL

Many engineered materials are made by etching metallic parts on circuit boards, or by embedding
metallic elements into a low loss dielectric matrix [22]. Some specific structures may be made from
metallic elements in vacuum or air [18]. Although there will always be some small metallic or dielectric
losses associated with all non-superconducting metamaterials, the assumption of a lossless material
greatly simplifies the analysis of the NRW method. By also assuming that the engineered material
is reciprocal and symmetric, resulting conditions on the S-parameters can be used to determine the
relationship between the extracted values of μ and ε and the S-parameters themselves. This should
prove useful for those wishing to synthesize a material with certain properties.

The assumed conditions for the engineered material are:
(i) Reciprocity: S21 = S12;
(ii) Symmetry: S11 = S22;
(iii) Lossless.

3.1. Conditions on S-Parameters

With the assumptions above, the S-parameters for the engineered material must obey certain properties.
For any single-mode 2-port network, the power dissipated is given by [23]

Pdiss =
1
2
aT Qa∗, (18)

where a is the 2-vector of wave amplitudes entering the network, and Q is the 2 × 2 dissipation matrix
Q = I − ST S∗ with I the identity matrix. If the 2-port network is lossless then Pdiss = 0 and thus
Q = 0 and the S-parameters obey the unitary property

ST S∗ = I. (19)

Writing out the matrix product gives the three conditions

|S11|2 + |S21|2 = 1, (20)
|S12|2 + |S22|2 = 1, (21)

S11S
∗
12 + S21S

∗
22 = 0. (22)
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From Eq. (22) it is evident that

|S22|2 = |S11|2 |S12|2
|S21|2 . (23)

Substituting Eqs. (20) and (21) then gives

|S22| = |S11|, |S21|2 = 1 − |S11|2, |S12|2 = 1 − |S22|2. (24)

If φij is the phase of Sij , then Eq. (22) provides the relationship

φ11 − φ12 − φ21 + φ22 ± π = 0, (25)

and thus only 1 amplitude, 3 phases, and a choice of sign are required to specify all 4 complex S-
parameters. If, in addition, the system is reciprocal, such that φ12 = φ21, then only 2 phases are
required. Finally, if the system is also symmetric, such that φ11 = φ22, only a single amplitude and
phase (and a sign selection) are required to specify all 4 complex S-parameters. In this case the phase
relationship is

φ11 − φ21 ± π

2
= 0. (26)

Combining Eqs. (20) and (26) provides the relationship that will be used to study the NRW method:

S21 = js0S11M, (27)

where s0 = ±1 and

M =

√
1 − |S11|2
|S11|2 . (28)

The presence of s0 shows that for each value of S11, there are two possible values of S21 that satisfy the
conditions of a lossless, reciprocal, and symmetric network.

From Eq. (6) it is evident that

V1 = S21 + S11 = S11 [1 + js0M ] , (29)

and so
V1r = S11r − s0S11iM, V1i = S11i + s0S11rM, (30)

where V1 = V1r + jV1i. Thus,
|V1|2 = |S11|2

[
1 + M2

]
= 1. (31)

Note that the effect of the sign s0 is to reflect the real part of V1 through the real S11 axis, and to reflect
the imaginary part of V1 through the imaginary S11 axis. That is, a change in s0 accompanied by a
change of sign in S11i will maintain the value of V1r, while a change in s0 accompanied by a change of
sign in S11r will maintain the value of V1i.

3.2. Relationship of μ and ε to S11

Substituting Eq. (27) into Eq. (8), it is found that X is a real quantity given by

X = �
{

1
S11

}
=

S11r

|S11|2 =
cos φ11

|S11| . (32)

Thus, X may take on all real values: −∞ < X < ∞. Note that the choice of the sign s0 does not affect
the value of X, and that X has odd symmetry about the imaginary S11 axis.

The analysis is separated into two cases for X which yield two classes of physical behavior for
ε and μ: X2 ≥ 1 and X2 < 1. The boundary between these two cases is determined by the curve
|S11| = | cos φ|, which is shown in Figure 2 as the two adjacent circles in the complex S-plane. The
points within and on these circles correspond to the case X2 ≥ 1, while the points external correspond
to X2 < 1.
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Table 1. Values of Γ resulting from two conditions on X and the choice of sign in Equation (9).

X ≥ 1 X ≤ −1
s1 = 1 1 ≤ Γ −1 ≤ Γ < 0

s1 = −1 0 < Γ ≤ 1 Γ ≤ −1

Case 1: X2 ≥ 1

From Eq. (9) it is seen that when X2 ≥ 1, Γ is real. The ranges of values taken on by Γ for the subcases
X ≥ 1 and X ≤ −1 are shown in Table 1. Whether or not |Γ| ≤ 1, which is the condition enforced in
the standard NRW approach, depends on the sign s1 chosen in Eq. (9).

When X = 1, Γ = 1 from Eq. (9). Also, from Eq. (8),

V1 − V2 + V1V2 − 1 = (V1 − 1)(V2 + 1) = 0, (33)

which is satisfied by S21 = 0 and S11 = 1. Similarly, when X = −1, Γ = −1, and

V2 − V1 + V1V2 − 1 = (V2 − 1)(V1 + 1) = 0, (34)

which is satisfied by S21 = 0 and S11 = −1. Thus, the cases X = 1 and X = −1 represent total
reflection from the material interface.

For values of X satisfying X2 > 1, note that since X is real,

F =
1 − X − s1

√
X2 − 1

1 + X + s1

√
X2 − 1

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−s1

√
X − 1
X + 1

, X > 1,

s1

√
X − 1
X + 1

, X < −1.

(35)

Thus the quantity F , which appears in all of the expressions for μ and ε, is real and has a sign determined
by s1. Clearly F becomes unbounded as X → −1.

Using Table 1 gives the values

F =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

+
√

X − 1
X + 1

, |Γ| < 1,

−
√

X − 1
X + 1

, |Γ| > 1.

(36)

Thus, enforcing the usual NRW condition that |Γ| < 1 produces a positive value of F .
The quantity P may be computed from Eq. (10):

P =
(V1r − Γ) + jV1i

(1 − ΓV1r) − jΓV1i
=

(XV1r − 1) + jV1i (1/Γ − X)
X − V1r

. (37)

The magnitude of P is found from

|P |2 =
∣∣∣∣ (V1r − Γ) + jV1i

(1 − ΓV1r) − jΓV1i

∣∣∣∣
2

=
[

V 2
1r + V 2

1i − 2ΓV1r + Γ2

1 + Γ2V 2
1r − 2ΓV1r + Γ2V 2

1i

]
= 1 (38)

since |V1|2 = 1. Because |P | = 1, it is evident from Eq. (11) that k̄z is purely real:

k̄z =
n − φ

2π

d/λ0
. (39)

The phase of P is found from Eq. (37) as

tan φ = V1i
1/Γ − X

XV1r − 1
= −s1V1i

√
X2 − 1

XV1r − 1
. (40)
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Note that the product XV1r is given by

XV1r =
S2

11r

|S11|2 − s0
S11rS11i

|S11|2 M. (41)

Thus, a change in s0 accompanied by either a change in sign of S11r or S11i maintains the value of
XV1r. Similarly, it was shown earlier that a change in s0 accompanied by a change in sign of S11r will
maintain the value of V1i. Thus, the four possible combinations of s0 and s1, as outlined in Table 3,
will produce four distinct symmetry states for φ. In each case the values of φ range from −π to π
with no duplicated values. Thus, each case gives identical values of μ and ε, except that the values are
associated with different, but symmetric, positions in the complex S11 plane.

At this point the following conclusions can be made about ε and μ from Eqs. (13)–(17):
(i) Both ε and μ are real;
(ii) The sign of ε is the same as the sign of μ, which is the sign of k̄zF .

As an example, select n = 0. Then the sign of k̄z is the opposite of the sign of φ. Since the sign
on F is given by Eq. (35), the signs of ε and μ are given in Table 2. The case of (|Γ| < 1,−π < φ < 0)
produces positive values of ε and μ, and represents a phase change of less than 180◦ for propagation
through the sample. This is what is expected of an ordinary material less than a half wavelength in
thickness, as is the standard situation for using NRW. More interesting, the case of (|Γ| < 1, 0 < φ < π)
produces negative ε and μ. If Δ is less than a half wavelength, this combination may be interpreted as
having the properties of a lossless double-negative metamaterial. While the magnitude of the reflection
coefficient is less than unity, the phase change through the material is positive.

Table 2. Sign of both ε and μ for n = 0.

|Γ| < 1 |Γ| > 1
−π < φ < 0 + −
0 < φ < π − +

Table 3. Signs for the four possible cases for φ with X2 > 1 and for P with X2 < 1.

Case s0 s1 or s2

A + +
B + −
C − +
D − −

Case 2: X2 < 1

From (9) it is seen that when X2 < 1, Γ is a complex number given by

Γ = X + js2

√
1 − X2, (42)

where s2 = ±1. It is immediately obvious that

|Γ|2 = X2 + 1 − X2 = 1, (43)

and thus this case represents total interfacial reflection.
The quantity P is again computed from Eq. (10), giving

P =
V1r − X

1 − V1rX + s2V1i

√
1 − X2

. (44)

Thus P is real, with the phase φ determined purely by the sign of P . As with φ when X2 ≥ 1, the signs
s0 and s2 produce four symmetry cases, which are shown in Table 3.
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The value of F may be determined from

F =
1 − Γ
1 + Γ

=
(1 − X) − js2

√
1 − X2

(1 + X) + js2

√
1 − X2

= −js2

√
1 − X

1 + X
. (45)

Thus F = jFi is always imaginary when X2 < 1; clearly Fi is unbounded as X → −1.
With these values, the behavior of μ and ε can now be examined. For the case of a TEM system,

Eq. (13) gives

εr = −k̄ziFi + jk̄zrFi, (46)

μr = k̄zi
Fi

− j k̄zr
Fi

. (47)

Thus, the real parts of the extracted ε and μ will always have opposite signs, as will the imaginary
parts. In fact, it is seen that

μr

εr
= − 1

F 2
i

< 0, (48)

and thus η =
√

μ/ε = jηi is purely imaginary. Then

Γ =
η − η0

η + η0
=

jηi − η0

jηi + η0
, (49)

and |Γ| = 1, indicating total interfacial reflection. Substituting Eqs. (11) and (45) gives specific formulas
for εr and μr:

εr = s2
ln |P |/2π

d/λ0

√
1 − X

1 + X
− js2

n − φ
2π

d/λ0

√
1 − X

1 + X
, (50)

μr = −s2
ln |P |/2π

d/λ0

√
1 + X

1 − X
+ js2

n − φ
2π

d/λ0

√
1 + X

1 − X
. (51)

Thus, if n = 0 is chosen, and P > 0, the permittivity and permeability will both be real. However, one
will be positive, and one will be negative.

For the case of a TE10 mode rectangular waveguide system, Eq. (15) gives

εr = −k̄zik̄z0Fi

(
1 − κ̄2

|k̄z|2
)

+ jk̄zr k̄z0Fi

(
1 +

κ̄2

|k̄z |2
)

, (52)

μr =
k̄zi

k̄z0Fi
− j

k̄zr

k̄z0Fi
. (53)

Thus, the real parts of μ and ε will have the same sign if |k̄z |2 < κ2. However, the imaginary parts will
always have opposite signs. For the case of a free-space system with perpendicular polarization, Eq.
(16) gives

εr = −k̄ziFi cos θ0

(
1 − sin2 θ0

|k̄z |2
)

+ jk̄zrFi cos θ0

(
1 +

sin2 θ0

|k̄z|2
)

, (54)

μr =
k̄zi

Fi cos θ0
− j

k̄zr

Fi cos θ0
, (55)

while for the case of parallel polarization, Eq. (17) gives

εr = − k̄ziFi

cos θ0
+ j

k̄zrFi

cos θ0
, (56)

μr =
k̄zi cos θ0

Fi

(
1 − sin2 θ0

|k̄z|2
)
− j

k̄zr cos θ0

Fi

(
1 +

sin2 θ0

|k̄z|2
)

. (57)

Similar to the TE10 waveguide mode case, the real parts of μ and ε will have the same sign if
|k̄z|2 < sin2 θ0. However, the imaginary parts will always have opposite signs.
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4. EXAMPLE 1: LAYERED DIELECTRIC MATERIAL

As a first, purely numerical example, consider a layered dielectric sample placed into a TEM system
(either a waveguiding system, or a free space system under normal incidence). The sample consists of
a layer of material with thickness Δ and relative permittivity εr = 10 embedded and centered within a
layer of relative permittivity εr = 2, as shown in Figure 1. The total thickness of the sample is d = 2cm,
and the thickness ratio is defined as τ = Δ/d, 0 ≤ τ ≤ 1. Figure 2 shows a plot of S11 at f = 2 GHz
and f = 3GHz, computed at the sample planes using a cascaded layer method. Since the layers are
lossless, the value of S21 is related to S11 through Eq. (27). At 2GHz it is found that s0 = 1 for all
values of τ . At 3 GHz, s0 = 1 for 0 < τ ≤ 0.763, and s0 = −1 for τ ≥ 0.764.

ߝ = 10 ߝ = ߝ2 = 2
Δ

݀
Figure 1. Layered dielectric in a TEM system.
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Figure 2. S11 for a layered dielectric material in
a TEM system.
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Figure 3. S11 for a layered dielectric material in
a WR340 rectangular waveguide.

Figure 2 provides some immediate feedback about the behavior of the values of μ and ε extracted
using the NRW method. When f = 2 GHz, all values of S11 reside in the region where X < −1, and
thus extracted values of μ and ε are real for all values of τ . Figure 4 shows μ and ε as a function of
τ , extracted using (13) at f = 2 GHz with n = 0. When τ = 0 the sample is homogeneous, with a
relative permittivity of εr = 2. When τ = 1 the sample is homogeneous, with a relative permittivity of
εr = 10. In between these values the extracted permittivity and permeability are smooth functions of τ ,
describing a homogenized behavior of the inhomogeneous material. Interestingly, εr peaks at at a value
greater than 10 when τ ≈ 0.8, while μr is slightly less than unity throughout the range of τ , reaching a
minimum of 0.71 at τ ≈ 0.65. Note that the value of s1 was chosen to make |Γ| ≤ 1, and was found to
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Figure 4. Permittivity and permeability for a
layered dielectric sample. f = 2 GHz, n = 0.
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be s1 = 1 for all values of τ . The resulting |Γ| is shown in Figure 5. Using the extracted values of μ and
ε it is possible to compute the homogenized wavelength as λ = λ0/

√
μrεr, where λ0 = c/f . Figure 6

shows the thickness of the sample compared to this wavelength. Clearly, the sample is less than a half
wavelength in thickness for all values of τ .

At f = 3GHz, the plot of S11 is significantly more complicated. For 0 ≤ τ < 0.266, S11 lies in the
region where X < −1, and thus the extracted values of ε and μ must be real. For 0.267 ≤ τ ≤ 0.736,
X lies in the range −1 < X < 1, and here μ and ε are complex. For 0.737 ≤ τ ≤ 0.763, X > 1 and
for 0.764 ≤ τ ≤ 1, X < −1. Thus, ε and μ will again be real for τ ≥ 0.737. The values of s1 and s2

were chosen to keep |Γ| ≤ 1. It was found that s1 = 1 for 0 ≤ τ < 0.266, s2 = 1 for 0.267 ≤ τ ≤ 0.736,
s1 = −1 for 0.737 ≤ τ ≤ 0.763, and s1 = 1 for 0.764 ≤ τ ≤ 1. Figure 5 shows a plot of |Γ|. As expected,
|Γ| = 1 in the range 0.267 ≤ τ ≤ 0.736 where the extracted material parameters are complex, indicating
a regime of total interfacial reflection.

The extracted values of μ and ε depend on the value of n chosen. Figure 7 shows μ and ε for
n = 0. As predicted, for 0 ≤ τ < 0.266 and for 0.737 ≤ τ ≤ 1 both ε and μ are real. In the range
0 ≤ τ < 0.266 the homogenized values may be interpreted as those of an ordinary dielectric. The
extracted value of εr is 2 at τ = 0, as expected, but diverges as τ approaches 0.266. The extracted μr

is unity at τ = 0, again as expected, but μr becomes zero as τ approaches 0.266. In contrast, when
0.737 ≤ τ ≤ 1, both εr and μr are negative. Since s0 = −1 and s1 = −1 in this range, this is Case D
of Table 3, indicating 0 < φ < π. Thus, the material may be interpreted as a lossless, double negative
metamaterial if the thickness is less than half a wavelength. Computing λ = λ0/�{√μrεr} from the
extracted values of μr and εr produces the normalized thickness shown in Figure 6. Clearly, d/λ < 0.5
for the range 0.737 ≤ τ ≤ 1.
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Setting n = 1 produces Figure 9. In this case the material has the expected homogenized behavior
as an ordinary dielectric in the range 0.737 ≤ τ ≤ 1. The extracted εr varies from zero at τ = 0.737 to
the expected value of 10 at τ = 1. Meanwhile μr diverges at τ = 0.737 and achieves the expected value
of unity at τ = 1. Figure 6 shows that in this range (unlike for n = 0) the thickness is greater than
a half wavelength. In the range 0 ≤ τ < 0.266 the homogenized values may be interpreted as those of
an ordinary dielectric with positive values of both εr and μr, but now the behavior of these parameters
is not as expected as τ approaches zero. In the range 0.267 ≤ τ ≤ 0.736, both εr and μr are complex,
regardless of n, and achieve opposite signs. Thus, values of ε and μ with expected behavior can only
be extracted in the range 0 ≤ τ < 0.266 using n = 0 and in the range 0.737 ≤ τ ≤ 1 using n = 1. Since
�{εr} > 0 for n = 0 and �{μr} > 0 for n = 1 in the range 0.267 ≤ τ ≤ 0.736, no meaningful values of
εr and μr may be extracted in this range.

An important conclusion may be drawn when the NRW method is used to characterize this lossless
engineered material as a metamaterial. At f = 3 GHz, when 0.737 ≤ τ ≤ 1 exactly the same values of
S11 and S21 are produced by an ordinary material with real positive values of εr and μr, and by a double
negative material with real negative values of εr and μr. Which of these should be used to interpret the
homogenized behavior of the layered material? This is a question that cannot be answered if only the
S-parameters of the materials are of interest. Additional tests other than using NRW for the sample
placed into a TEM system are required to address the ambiguous behavior of the material.

The question arises as to whether the extracted material parameters depend on the method of
measurement. For a homogeneous sample, results are theoretically independent of whether the sample
is measured in a free-space system, a TEM guided wave system, or a rectangular waveguide (except for
some issues near half-wavelength frequency boundaries). To see the effect of the measurement system
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on the properties of an engineered material, the same layered sample considered above is placed into a
WR-340 rectangular waveguide with a = 3.4 inches (86.36 mm). The S-parameters, computed using a
cascaded layer approach, are shown in Figure 3 for f = 2GHz and f = 3 GHz. Values of S11 are quite
similar to those for the TEM system shown in Figure 2. The curve is somewhat displaced for f = 2 GHz,
but remains entirely within the circle defined by X2 > 1. Thus, the permittivity and permeability are
purely real at this frequency, as seen in Figure 4. In fact, the values differ only slightly from those
found using a TEM system. The S11 curve is also somewhat shifted for f = 3GHz, but the extracted
permittivity and permeability for both n = 0 and n = 1 are very similar to those for a TEM system, as
seen in Figures 8 and 10. Note that the transitions from X2 > 1 to X2 < 1 occur at slightly different
values of τ compared to the TEM case.

5. EXAMPLE 2: WAVEGUIDE IRIS

As a second example, consider the experimental S-parameters of a rectangular iris placed in an X-
band rectangular waveguide. The waveguide is WR-90 with dimensions a = 0.9 inch by b = 0.4 inch
(22.86 by 10.16 mm). The iris consists of a 0.125 inch (3.175 mm) thick metallic section with an opening
0.125 inches (3.175 mm) tall located at the top of the section. The iris was constructed by creating
a flange on a 3-D printer using “Vero White” polymer, largely a mixture of poly(isobornyl acrylate)
and poly(methyl methacrylate). The printer is a Stratasys Objet Connex350 with a repeatable print
resolution of approximately 16 µm. The printed plastic has approximately 10 µm of surface roughness.
The printed part was sputter coated with 100 nm of titanium followed by 2µm of copper (about three
skin depths at 10 GHz). The flange includes both bolt holes and holes for precision alignment pins, as
shown in Figure 11. The flange was bolted between two WR90 waveguide sections of length 6 inches
(152.4 mm) and the S-parameters were measured using an Agilent E5071C ENA vector network analyzer
with a 3-short calibration. The S-parameters measured at the ends of the waveguide sections were
phase-shifted to the plane of the iris to determine the S-parameters of the iris. Thus, the transformed
S-parameters only involve the dominant mode amplitude, even though higher-order mode fields are
present near the iris. See Figure 12 for a diagram of the experimental setup.

Whether the measured S-parameters satisfy the conditions for a lossless network can be tested by
using Eq. (20). If the system is lossless, the quantity 1 − |S11|2 − |S21|2 will be zero. This quantity is
plotted in Figure 15, and found to vary from around 0.03 at the low end of the band, to near zero at
the high end. Thus, the S-parameters describe a slightly lossy network. This is probably due to losses
in the copper, possibly exacerbated by the roughness of the surface and uneven sputtering of copper.

Figure 11. Waveguide iris created
using 3-D printed plastic flange
sputtered with copper.

Figure 12. Experimental setup used to measure the S-
parameters of the waveguide iris.
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The measured values of S11 are shown in Figure 13. It is seen that these measurements fall into the
region where X2 > 1, and thus the extracted imaginary values of μ and ε would be zero if the network
were truly lossless. Figure 14 shows the actual values extracted using the NRW method assuming the iris
is a homogeneous material. The real part of the extracted value of μ is fairly constant across the band
with real μr ≈ 0.3, while real ε varies smoothly from about �{εr} = 4.5 to �{εr} = 6. The extracted
imaginary parts of the permittivity and permeability are small but nonzero, with �{εr} varying from a
low of about 0.07 to a high of 0.2 and �{μr} varying from a low of about −0.04 to a high of −0.01. Note
that the positive value for the imaginary part of ε does not violate energy conservation, since the NRW
method assumes the sample to be homogeneous, which it is not. All parameters were extracted using
n = 0. This choice is justified by computing the electrical thickness of the iris using λ = λ0/�{√μrεr}
from the extracted values of μr and εr, producing the result shown in Figure 15. Clearly d/λ < 0.5 over
the measurement band.

6. EXAMPLE 3: METAMATERIAL WAVEGUIDE INSERT

As an example of a structure that has appreciable loss, consider a waveguide insert designed to have a
negative permeability over a portion of F-band. The insert consists of a 16× 16 array of square copper
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pixels, each of size 0.5 × 0.5 mm, etched onto 0.78 mm thick Rogers 5879 RT/duroid with dielectric
constant εr = 2.33 and loss tangent δ = 0.0012. A genetic algorithm was used to turn on the presence
of various pixels such that permeability near 5.5 GHz, when extracted using the NRW method, has a
negative real part [24]. Pixels were placed both on the front and back surfaces of the insert, so that the
back surface is a reverse mirror image of the front, and the structure is symmetric when placed into a
waveguide (i.e., S11 = S22. The front surface of the resulting pixelated structure is shown in Figure 16.

The S-parameters of the waveguide insert were simulated using HFSS across the band 5–6 GHz
with the insert placed along the centerline of WR159 rectangular waveguide (40.386 by 20.193 mm), with
S11 plotted in Figure 17. The insert is not lossless, and both copper and substrate loss are included in
the simulation. However, the loss is small enough that the analysis developed earlier is very useful in
predicting the behavior of the extracted material parameters. From Figure 17 it is seen that X2 > 1 in
the frequency ranges 5 < f < 5.61 GHz and 5.77 < f < 6 GHz. Thus, if the insert were lossless, both
ε and μ would be purely real in these frequency ranges. For 5.61 < f < 5.77 GHz, X2 < 1, and thus
in this frequency range a lossless insert would produce complex values of ε and μ, with the imaginary
parts having opposite signs. Instead of these expected abrupt transitions (as were seen in the case of
the layered dielectric example), the presence of loss produces a smoother transition across the frequency
boundaries, but the behavior is still much as is predicted.

Figure 18 shows the values of ε and μ extracted from the simulated S-parameters using the NRW
method with n = 0, and assuming the insert is homogeneous. It is seen for 5 < f < 5.5 GHz and for
5.8 < f < 6GHz the imaginary parts of μ and ε are very small, but non-zero, with a smooth transition
into a region where the structure undergoes a strong resonance. In this region, between approximately
5.6 and 5.75 MHz, �{μ} passes through zero and becomes negative, while �{μ} becomes highly negative.
Both �{ε} and �{ε} remain positive throughout the resonance region, except for a very small range
around 5.75 GHz where �{ε} is slightly less than zero. Thus, as predicted by the analysis presented
earlier, the imaginary parts of μ and ε have opposite signs within the resonance band.

The effect of negative μ is to produce a frequency range where the propagation constant of
the dominant waveguide mode is real and negative, the wave is evanescent, and there is no power
transmission. This is clearly observed in Figure 19, which shows the magnitudes of the simulated S-
parameters. The value of |S21| is significantly reduced in the resonance region 5.6 < f < 5.75 GHz,

Figure 16. Metamaterial waveguide insert.
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Figure 17. Simulated values of S11 for a
metamaterial insert in F-band waveguide.
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where �{μ} < 0. This is also the region where structure loss is most significant as revealed by the power
balance curve plotted in Figure 20. Figure 20 also shows the electrical thickness of the insert found
using λ = λ0/�{√μrεr} from the extracted values of μr and εr. Note that with n = 0 the electrical
length is never greater than 0.4λ. Interestingly, at the upper end of the resonance region the electrical
length becomes very small, since λ increases dramatically at the point where εr ≈ 0.

The bandstop behavior of the insert can be used to produce a waveguide filter with desirable
properties. By using several carefully designed pixelated structures, the stop band can be increased,
and the skirts made quite sharp [25].

7. CONCLUSION

Relationships between the measured S-parameters of an engineered material and the permittivity and
permeability of the material are derived by examining the closed-form expressions of the Nicolson-
Ross-Weir method. The conditions under which the extracted material properties may be associated
with a lossless material are deduced. Also identified are the relationship between the signs of the real
and imaginary parts of the permittivity and permeability, when the extracted material parameters are
either real or complex. Although the expressions are only truly valid when the material is lossless, it
is possible to use the expressions to understand and predict the behavior of engineered materials with
low to moderate loss, as demonstrated by considering the example of a metamaterial waveguide insert.
The derived relationships between the material characteristics and the S-parameters should prove useful
when synthesizing materials to have certain desired properties.
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