Vol. 149
Latest Volume
All Volumes
PIER 182 [2025] PIER 181 [2024] PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2014-09-30
Time-Domain Microwave Radar Applied to Breast Imaging: Measurement Reliability in a Clinical Setting
By
Progress In Electromagnetics Research, Vol. 149, 119-132, 2014
Abstract
This work presents an evaluation of the measurement challenges in clinical testing of our microwave breast cancer screening system. The time-domain radar system contains a multistatic 16-antenna hemi-spherical array operating in the 2-4 GHz frequency range. We investigate, for the first time with such a system in clinical trials, the repeatability of measurements and its effect on image reconstruction. We record vertical and horizontal measurement uncertainties under different scenarios and verify, using previously introduced compensation methods, that they can be successfully reduced to an acceptable level from the standpoint of image reconstruction. We also examine how placement of an immersion medium can affect collected breast scan data. Finally, we probe the repeatability and consistency of measurements with patients. With the goal of confirming the feasibility of frequent breast health monitoring, with our system, we obtain a total of 342 breast scans collected over 57 patient visits to determine how much scan data varies when there are no changes in between scans, and how much it varies when the patient is repositioned in the system. We confirm that, by taking care in patient positioning in the system and with respect to the immersion medium, the measurement repeatability is high.
Citation
Emily Porter, Adam Santorelli, and Milica Popović, "Time-Domain Microwave Radar Applied to Breast Imaging: Measurement Reliability in a Clinical Setting," Progress In Electromagnetics Research, Vol. 149, 119-132, 2014.
doi:10.2528/PIER14080503
References

1., American Cancer Society, "Cancer facts & figures,", 2012.
doi:10.1118/1.2986144

2. Karellas, A. and S. Vedantham, "Breast cancer imaging: A perspective for the next decade," Med. Phys., Vol. 35, No. 11, 4878-4897, Nov. 2008.
doi:10.1109/MP.2003.1180933

3. Fear, E., P. Meaney, and M. Stuchly, "Microwaves for breast cancer detection?," IEEE Potentials, 12-18, Feb/Mar. 2003.
doi:10.1109/TAP.2011.2165496

4. Amineh, R. K., M. Ravan, A. Khalatpour, and N. K. Nikolova, "Three-dimensional near-field microwave holography using reflected and transmitted signals," IEEE Trans. Antennas and Propag., Vol. 59, No. 12, 4777-4789, 2011.
doi:10.1109/TMI.2012.2197218

5. Grzegorczyk, T., P. M. Meaney, P. A. Kaufman, R. M. diFlorio-Alexander, and K. D. Paulsen, "Fast 3-D tomographic microwave imaging for breast cancer detection," IEEE Trans. Med. Imag., Vol. 31, No. 8, 1584-1592, Aug. 2012.

6. Bourqui, J., J. M. Sill, and E. C. Fear, "A prototype system for measuring microwave frequency re°ections from the breast," International Journal of Biomedical Imaging, Vol. 2012, Article ID 851234, 1-12, 2012.
doi:10.1118/1.1984349

7. Jiang, H., C. Li, D. Pearlstone, and L. Fajardo, "Ultrasound-guided microwave imaging of breast cancer: Tissue phantom and pilot clinical experiments," Med. Phys., Vol. 32, No. 8, 2528-2535, Aug. 2005.

8. Klemm, M., I. J. Craddock, J. A. Leendertz, A. Preece, D. R. Gibbins, M. Shere, and R. Benjamin, "Clinical trials of a UWB imaging radar for breast cancer," 2010 4th European Conference on Proc. Antennas and Propagation (EuCAP), 1-4, Barcelona, Spain, Apr. 12-16, 2010.
doi:10.1109/TIM.2011.2141250

9. Zeng, X., A. Fhager, P. Linner, M. Persson, and H. Zirath, "Experimental investigation of the accuracy of an ultrawideband time-domain microwave-tomographic system," IEEE Trans. Instrum. Meas., Vol. 60, No. 12, 3939-3949, Dec. 2011.

10. Sabouni, A. and S. Noghanian, "The robustness of HGA/FDTD in the presence of noise for microwave breast cancer," IEEE Antennas and Propagation Society International Symposium (APSURSI), 1-4, Charleston, SC, United States, Jun. 1-5, 2009.

11. Zeng, X., A. Fhager, and M. Persson, "Effects of noise on tomographic breast imaging," General Assembly and Scientific Symposium (URSI), 1-4, Istanbul, Turkey, Aug. 13-20, 2011.

12. Porter, E., A. Santorelli, and M. Popovie, "Measurement uncertainties in differential radar applied to breast imaging," Proc. 2014 IEEE Sensors Applications Symposium, 6-10, Queenstown, New Zealand, Feb. 18-20, 2014.
doi:10.2528/PIERB13082207

13. Porter, E., E. Kirshin, A. Santorelli, and M. Popovic, "Microwave Breast Screening in the Time-Domain: Identi¯cation and Compensation of Measurement-Induced Uncertainties," Progress In Electromagnetics Research B, Vol. 55, 115-130, 2013.

14. Porter, E., A. Santorelli, and M. Popovic, "Time-domain microwave radar for breast screening: Initial testing with volunteers," Proc. 8th European Conference on Antennas and Propagation (EUCAP), The Hague, The Netherlands, Apr. 6-11, 2014.
doi:10.2528/PIER12091008

15. Santorelli, A., M. Chudzik, E. Kirshin, E. Porter, A. Lujambio, I. Arnedo, M. Popovic, and J. D. Schwartz, "Experimental demonstration of pulse shaping for time-domain microwave breast imaging," Progress In Electromagnetics Research, Vol. 133, 309-329, 2013.
doi:10.2528/PIER08090701

16. Kanj, H. and M. Popovic, "A novel ultra-compact broadband antenna for microwave breast tumor detection," Progress In Electromagnetics Research, Vol. 86, 169-198, 2008.
doi:10.1109/TBME.2008.919716

17. Lim, H. B., N. T. T. Nhung, E. P. Li, and N. D. Thang, "Confocal microwave imaging for breast cancer detection: Delay-multiply-and-sum image reconstruction algorithm," IEEE Trans. Biomed. Eng., Vol. 55, No. 6, 1697-1704, Jun. 2008.
doi:10.1109/TIP.2003.819861

18. Wang, Z., A. C. Bovik, H. R. Sheikhm, and E. P. Simoncelli, "Image quality assessment: From error visibility to structural similarity," IEEE Trans. Image Process., Vol. 13, No. 4, 600-612, Apr. 2004.
doi:10.1109/42.730403

19. Penney, G., J. Weese, J. A. Little, P. Desmedt, D. L. G. Hill, and D. J. Hawkes, "A comparison of similarity measures for use in 2-D-3-D medical image registration," IEEE Trans. Med. Imag., Vol. 17, No. 4, 586-595, Aug. 1998.
doi:10.1016/S0167-8655(98)00115-9

20. Di Gesµu, V. and V. Starovoitov, "Distance-based functions for image comparison," Pattern Recognition Letters, Vol. 20, 207-214, 1999.