submit Submit login
Vol. 139
Latest Volume
All Volumes
PIER 182 [2025] PIER 181 [2024] PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2013-05-19
Multilevel Model Order Reduction with Generalized Compression of Boundaries for 3-d FEM Electromagnetic Analysis
By
Progress In Electromagnetics Research, Vol. 139, 743-759, 2013
Abstract
This paper presents a multilevel Model Order Reduction technique for a 3-D electromagnetic Finite Element Method analysis. The reduction process is carried out in a hierarchical way and involves several steps which are repeated at each level. This approach brings about versatility and allows one to efficiently analyze complex electromagnetic structures. In the proposed multilevel reduction the entire computational domain is covered with macro-elements which are subsequently nested, in such a way that size of the problem which has to be reduced at each level is relatively small. In order to increase the speed of the reduction at each level, the electric field at the macro-elements' boundaries is projected onto the subspace spanned by Legendre polynomials and trigonometric functions. The results of the numerical experiments confirm the validity and efficiency of the presented approach.
Citation
Grzegorz Fotyga, Krzysztof Nyka, and Michal Mrozowski, "Multilevel Model Order Reduction with Generalized Compression of Boundaries for 3-d FEM Electromagnetic Analysis," Progress In Electromagnetics Research, Vol. 139, 743-759, 2013.
doi:10.2528/PIER13032708
References

1. Dziekonski, A., A. Lamecki, and M. Mrozowski, "Tuning a hybrid GPU-CPU V-cycle multilevel preconditioner for solving large real and complex systems of FEM equations," IEEE Antennas and Wireless Propagation Letters, Vol. 10, 619-622, 2011.
doi:10.1109/LAWP.2011.2159769

2. Dziekonski, A., A. Lamecki, and M. Mrozowski, "A memory efficient and fast sparse matrix vector product on a GPU," Progress In Electromagnetics Research, Vol. 116, 49-63, 2011.

3. Fotyga, G., K. Nyka, and M. Mrozowski, "Efficient model order reduction for FEM analysis of waveguide structures and resonators," Progress In Electromagnetics Research, Vol. 127, 277-295, 2012.
doi:10.2528/PIER12021609

4. Zhu, Y. and A. C. Cangellaris, "Macro-elements for efficient FEM simulation of small geometric features in waveguide components," IEEE Trans. Microwave Theory Tech., Vol. 48, 2254-2260, Dec. 2000.
doi:10.1109/22.898972

5. De la Rubia, V. and J. Zapata, "Microwave circuit design by means of direct decomposition in the finite-element method," IEEE Trans. Microwave Theory Tech., Vol. 55, No. 7, 1520-1530, Jul. 2007.
doi:10.1109/TMTT.2007.900307

6. Wu, H. and A. C. Cangellaris, "A finite-element domain-decomposition methodology for electromagnetic modeling of multilayer high-speed interconnects," IEEE Transactions on Advanced Packaging, Vol. 31, No. 2, 339-350, May 2010.

7. Lee, S.-H. and J.-M. Jin, "Adaptive solution space projection for fast and robust wideband finite-element simulation of microwave components," IEEE Microwave and Wireless Components Letters, Vol. 17, No. 7, 474-476, Jul. 2007.
doi:10.1109/LMWC.2007.899290

8. Fotyga, G., K. Nyka, and L. Kulas, "A new type of macro-elements for efficient two-dimensional FEM analysis," IEEE Antennas and Wireless Propagation Letters, Vol. 10, 270-273, Apr. 2011.
doi:10.1109/LAWP.2011.2134063

9. Podwalski, J., P. Kowalczyk, and M. Mrozowski, "Efficient multiscale finite difference frequency domain analysis using multiple macromodels with compressed boundaries," Progress In Electromagnetics Research, Vol. 126, 463-479, Apr. 2012.
doi:10.2528/PIER12012008

10. Kulas, L., P. Kowalczyk, and M. Mrozowski, "A novel modal technique for time and frequency domain analysis of waveguide components," IEEE Microwave and Wireless Components Letters, Vol. 21, No. 1, 7-9, Jan. 2011.
doi:10.1109/LMWC.2010.2089439

11. Kulas, L. and M. Mrozowski, "A fast high-resolution 3-D finite-difference time-domain scheme with macromodels," IEEE Trans. Microwave Theory Tech., Vol. 52, No. 9, 2330-2335, Sep. 2004.
doi:10.1109/TMTT.2004.834585

12. Kulas, L. and M. Mrozowski, "Multilevel model order reduction," IEEE Microwave and Wireless Components Letters, Vol. 14, No. 4, 165-167, Apr. 2004.
doi:10.1109/LMWC.2004.827113

13. Fotyga, G., P. Kowalczyk, L. Kulas, K. Nyka, J. Podwalski, and M. Mrozowski, "Reduced order models in computational electromagnetics (in memory of Ruediger Vahldieck)," 2012 Asia-Pacific Symposium on Electromagnetic Compatibility (APEMC), 705-708, May 2012.
doi:10.1109/APEMC.2012.6237900

14. Sheehan, B. N., "ENOR: Model order reduction of RLC circuits using nodal equations for efficient factorization," Proc. IEEE 36th Design Autom. Conf., 17-21, Jun. 1999.

15. Pelosi, G., R. Coccioli, and S. Selleri, Quick Finite Elements for Electromagnetic Waves, 2nd Edition, Artech House Antenna Library, 2009.

16. Ingelstrom, P., "A new set of H(curl)-conforming hierarchical basis functions for tetrahedral meshes," IEEE Trans. Microwave Theory Tech., Vol. 54, No. 1, 106-114, Jan. 2006..
doi:10.1109/TMTT.2005.860295

17. Dziekonski, A., P. Sypek, A. Lamecki, and M. Mrozowski, "Finite element matrix generation on a GPU," Progress In Electromagnetics Research, Vol. 128, 249-265, 2012.

18. Kusiek, A. and J. Mazur, "Application of hybrid finite-difference mode-matching method to analysis of structures loaded with axially symmetrical posts," Microwave and Optical Technology Letters, Vol. 53, No. 1, 189-194, Jan. 2011.
doi:10.1002/mop.25644

19. Szydlowski, L., A. Lamecki, and M. Mrozowski, "Coupled-resonator waveguide filter in quadruplet topology with frequency-dependent coupling a design based on coupling matrix," IEEE Microwave and Wireless Components Letters, Vol. 22, No. 11, 553-555, Nov. 2012.
doi:10.1109/LMWC.2012.2225604

20. Lech, R. and J. Mazur, "Tunable waveguide filter with bow-tie metallic posts," IEE Proceedings Microwaves, Antennas and Propagation, Vol. 151, No. 2, 156-160, Apr. 2004.
doi:10.1049/ip-map:20040166