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Abstract—This paper presents a multilevel Model Order Reduction
technique for a 3-D electromagnetic Finite Element Method analysis.
The reduction process is carried out in a hierarchical way and involves
several steps which are repeated at each level. This approach
brings about versatility and allows one to efficiently analyze complex
electromagnetic structures. In the proposed multilevel reduction the
entire computational domain is covered with macro-elements which are
subsequently nested, in such a way that size of the problem which has
to be reduced at each level is relatively small. In order to increase
the speed of the reduction at each level, the electric field at the
macro-elements’ boundaries is projected onto the subspace spanned
by Legendre polynomials and trigonometric functions. The results of
the numerical experiments confirm the validity and efficiency of the
presented approach.

1. INTRODUCTION

The finite element method (FEM) is one of the most versatile mesh-
based numerical techniques used nowadays to solve electromagnetic
problems in geometrically complex structures. However, it becomes
rather time and memory consuming when analyzing multiscale
problems which require strong local mesh refinements. One emerging
trend to reduce the simulation time is to use Graphics Processing
Units combined with matrix solvers [1, 2]. Another way to improve
the efficiency of FEM in such cases is to apply model order reduction
(MOR) techniques which since the end of the last century have been
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gaining popularity in the area of computational electromagnetics. In
particular, MOR has been successfully adopted in mesh based methods
such as the FEM [3–8] and the finite difference methods, both in time
(FDTD) and frequency (FDFD) domain [9–12]. The main idea of
MOR is to find a low-dimensional approximation (subspace) of the
original large set of state-space equations which provides satisfactory
accuracy of the computations as far as the input-output behavior of the
circuit is concerned [13]. In other words, huge sparse FEM matrices
are replaced with small but dense ones. Since the original number of
variables of the problem is reduced significantly, there are two main
benefits of this operation: a considerable acceleration of computations
and decrease in memory requirements. The reduction process involves
repetitive solution of a system of original equations at a single (or few)
frequency point, which can be done with a single LU decomposition,
and pays off when wideband calculations are needed. However, since
the original system has to be solved in order to find the projection
basis, the size of the matrix limits the applicability of the technique.
One area in which the MOR technique is particularly useful and its
benefits are not offset by the matrix size, is when it is applied locally
to subregions which require strong mesh refinements, due to a complex
electromagnetic field distribution. The small and dense matrix blocks
corresponding to these subregions are called either macromodels or
macro-elements [3, 9].

Even though the matrices processed for finding the projection
basis are much smaller than the matrix for the entire domain,
creating macro-elements usually becomes a decisive numerical load,
which increases with the volume of the subregions subject to MOR
and the number of the unknowns at their boundaries. This is
particularly relevant in 3-D problems and may affect the overall
computational efficiency. To remedy this, the projection of the field
at the boundaries onto orthogonal functions prior to reduction was
proposed in [5, 10]. In our recent paper [3] we have developed a
formulation of the approach introduced in [4] adapted for a 3-D FEM
and demonstrated the benefits of using this approach for the cascaded
waveguide structures. The approach described therein combines the
efficient model order reduction (ENOR) algorithm [14] with modal
expansion at the interfaces between the subdomains [9]. Since used to
connect macro-elements to an adjacent mesh or another macro-element
these interfaces are also called macro-element ports. The creation of
the macro-elements is preceded by projecting the field at their ports
onto a subspace spanned by a few waveguide modes. The number of
modes which have to be taken into account is small, as higher order
modes excited at a waveguide discontinuity decay quickly and can be
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neglected. This step results in much lower number of the degrees of
freedom at macro-elements’ ports, therefore can be referred to as port
compression.

Although the method proposed in [3] improves the speed of the
analysis, it still has some limitations which will be addressed in this
paper. Since only waveguide modes are used for the expansion of the
tangential fields of the macro-elements’ ports they have to be located
at the cross-section of a waveguide and constrained by metallic walls
(PEC). Another limitation becomes apparent if one considers many
macro-elements. If there are many macro-elements and/or their dense
matrices are not sufficiently small, the resulting system may remain
large enough to make its solution a considerable component of the
overall computational load.

In this paper we propose two enhancements to the MOR technique
in the 3-D FEM analysis which overcome the above mentioned
limitations. To improve the efficiency of solving the reduced system we
use the multilevel model order reduction which extends the standard
single-level MOR by introducing a hierarchical grouping of subregions
subject to subsequent multiple order reductions. A similar approach
was proposed for the 2-D FD formulations in [12]. The macro-elements
created at lower levels are repeatedly embedded in upper-level macro-
elements. At the top level only one macro-element remains which
corresponds to the whole domain. In order to relax the restrictions
regarding the division of the analyzed problem into subdomains, which
are imposed by the need of modal expansion of the fields at their
interfaces, we propose a more general formulation of the compression
of macro-elements’ ports. Instead of waveguide modes we use series
of orthogonal functions which allows for separation of macro-elements
from the physical boundaries of an analyzed structure. The same idea
has been used in the FDFD method [9], however only for 2-D problems.
In this paper Legendre polynomials and trigonometric functions are
applied to a full 3-D vectorial FEM approximation.

2. FORMULATION

2.1. Finite Element Method

Let us consider a source-free bounded 3-D region Ω. A part of the
region’s boundary is a perfect electric conductor, while the remaining
parts form input or output ports where excitation is applied. The
electric field ~E obeys the vector wave equation [3, 15]:

∇× 1
µr
∇× ~E − k2

0εr
~E = 0 (1)
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where ~E is the vector of the electric field, k0 the wavenumber, and
µr, εr are the relative permittivity and permeability of the medium,
respectively. Due to the FEM approximation of (1) using curvilinear
tetrahedral elements and the third order vector basis functions [16]
and applying perfect electric conductor surface (PEC) on all physical
walls, the following matrix equation is obtained [17]:

(
K− k2

0M
)
e = b, (2)

where K and M are N0 × N0 sparse symmetric stiffness and mass
matrices, respectively. e is the vector of unknown coefficients of the
basis functions associated with mesh edges, faces and elements, b the
excitation vector, and N0 the total number of degrees of freedom. Since
there are N0 degrees of freedom and the problem is assumed to lossless,
the solution of Equation (2) is sought in a RN0 space. To indicate
that the solution is related to the region Ω, we shall denote Ω the
linear subspace related to the degrees of freedom associated with this
region. The same notation will be used regarding all subregions and
their corresponding solution subspaces.

2.2. Model Order Reduction Algorithm

For the sake of simplicity we will introduce the model-order reduction
algorithm for a generic problem with a source-free 3-D region Ω̂
(Figure 1) with N̂ variables, which will be subject to the reduction
scheme. It is bounded by metallic walls and input-output ports
P1 . . . PN . Such a model problem may also represent a situation where
Ω̂ is a subregion of a larger region Ω, and consequently N̂ ≤ N0.
In this case physical metallic boundaries may not exist, and the
boundary is composed of fictitious interfaces between subregions. Our
MOR approach, whose details were presented in [3, 8], begins with
a consistent numbering of the global variables in order to split the

Figure 1. A source-free domain Ω̂, bounded by the metallic walls and
input-output ports P1 . . . PN .



Progress In Electromagnetics Research, Vol. 139, 2013 747

matrices and vectors from (2) into the following blocks:
([

KP ŜT
K

ŜK K̂

]
+ k2

0

[
MP ŜT

M

ŜM M̂

])[
eP

ê

]
=

[
bP

0

]
, (3)

where index P and a hat denote the blocks which correspond to the
ports and to the Ω̂ region, respectively. Submatrices ŜK and ŜM

correspond to the elements which couple region Ω̂ to the rest of the
computational domain. Equation (3) can be split into two matrix
equations, one of which has the form:

(
K̂ + k2

0M̂
)
ê = −

(
ŜK + k2

0ŜM

)
eP . (4)

Note that the above equation involves the degrees of freedom
corresponding to region Ω̂(ê) or to ports (eP ). Vector bP serves as the
excitation. The equation has the form which is suitable for application
of the ENOR [14] algorithm which can be applied in order to reduce
the number of variables in region Ω̂:

(
s0C +

1
s0

Γ
)

ê = BeeP , (5)

where C = M̂, Γ = K̂, Be = −(s−1
0 ŜK + s0ŜM ) and s0 =

k0. The ENOR algorithm generates a frequency-independent set of
orthonormal vectors, called basis V, which spans the solution space
which is sufficient to faithfully reflect the interaction between fields at
ports in limited frequency range. The number of columns in V depends
on q — the reduction order and NP — the number of variables at the
macro-element interface, and it is equal to:

Ñ = qNP . (6)

Note that Ñ ¿ N̂ . The value of q and NP has a strong impact on the
efficiency of the reduction algorithm [3]. The choice of an expansion
frequency s0 [14] depends on the bandwidth of the analyzed structure
and in our case it is set to 2πf0, where f0 is the center frequency. The
last step of the MOR algorithm is the projection of the second equation
in (3) using V, which results in a significant reduction of the number
of variables:([

KP ŜT
KV

VT ŜK VT K̂V

]
+ k2

0

[
MP ŜT

MV
VT ŜM VTM̂V

])[
eP

VT ê

]
=

[
bP

0

]
. (7)

After substituting:

K̃=VT K̂V, M̃=VTM̂V, S̃K =VT ŜK , S̃M =VT ŜM , ẽ=VT ê (8)
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one obtains:([
KP S̃T

K

S̃K K̃

]
+ k2

0

[
MP S̃T

M

S̃M M̃

])[
eP

ẽ

]
=

[
bP

0

]
, (9)

where the tilde represents the reduction of the matrix operators M̂,
K̂, ŜK , ŜM and the vector of unknowns ê by the projection vectors V.
As the effect of the projection, the number of elements in ẽ is equal to
Ñ , which is much smaller than N̂ . The reduction process associated
with region Ω̂, described above can be represented as follows:

(
Ω̂, P

) projection V−−−−−−−−−−−−−−→
(
Ω̃, P

)
, (10)

where the solution subspace Ω̂, with N̂ degrees of freedom, is projected
onto Ω̃ of size Ñ , using the orthogonal basis V, whereas the electric
fields at the ports P remain unchanged (note, that Ω̂ and P denotes the
solution subspaces of subregions Ω̂ and P , respectively). Although the
presented MOR procedure was performed for the whole domain, it can
be applied separately to many subdomains of more complex problems.
For such realistic situations a multilevel reduction is proposed with the
aim of further improving the efficiency of model-order reduction.

2.3. Multilevel Model Order Reduction

Let us consider a structure (Figure 2(a)) composed of the two cavities
Ω1 and Ω2, separated by the internal port P8, with four input-
output ports P1 . . . P4. Each of the cavities contains small geometrical
features, which cause complex field behavior in their surroundings.
Such structure can be analyzed by means of the approach presented
in [3], using the modal projection in ports P1 . . . P4 and P8 and creating
two macro-elements, which cover the whole computational domain.
However, such an analysis might be inefficient, since the number of
variables in each of the cavities can be too large, affecting the reduction
time. In order to alleviate this effect we propose to apply reduction
in a hierarchical way, starting from relatively small regions (possibly
not connected) and then gradually extending the scope of the region
which is to be subject to reduction up to the point where the entire
structure is converted into a single macro-element. In other words, the
reduction process is divided into steps forming a procedure which is
illustrated in (Figure 2). After [12] we call it a multilevel reduction.

These steps of the reduction form a multilevel hierarchy, where
macro-elements created at lower levels are repeatedly embedded in
upper-level macro-elements. In the first step, corresponding to the
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(a)

(b) (c) (d)

Figure 2. The structure subject to (a) the multilevel reduction
approach and (b)–(d) three stages of subsequent levels of the
reductions. The shades of grey indicate the subregions covered by
macro-elements created at different levels.

lowest level (Figure 2(b)) regions with the finest mesh (Ω3 . . . Ω5)
should be separated from the computational domain using artificial
interfaces P5 . . . P7. They are then subject to the MOR procedure
carried out in the manner presented in Section 2.2. It should be noted
that the procedure based on modal expansion, which was presented
in [3], cannot be used to accelerate the reduction process. This
is because the fictitious interfaces are not connected to a physical
boundary of the structure so the modes can not be defined. For such
cases a more general approach was developed, which is presented in
the subsequent sections of this paper. In the second step (Figure 2(c))
the FEM equations for each of the cavities are reduced, creating two
macro-elements, however each of them is composed of the parts reduced
in the first step and the parts which have not been reduced yet (Ω1,
Ω2). In the last step all macro-elements which were created previously
are gathered together creating a single macro-element for the whole
structure (Figure 2(d)).

Each of the multilevel reduction stages can be described using the
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following transformation, according to (10):
(
Ω̂

(l)
, P (l)

) projection V−−−−−−−−−−−−−−→
(
Ω̃

(l)
, P (l)

)
, (11)

where the uppercase index l denotes the reduction level. Using this
notation different multilevel schemes may be expressed in a very
compact form which, for the problem illustrated in Figure 2, is as
following:
• l = I — three macro-elements:

Ω̂
(Ia)

= Ω3, P (Ia) = P 5,

Ω̂
(Ib)

= Ω4, P (Ib) = P 6,

Ω̂
(Ic)

= Ω5, P (Ic) = P 7.

(12)

• l = II — two macro-elements:

Ω̂
(IIa)

= (Ω1 ∪ P 5) ∪ Ω̃
(Ia)

, P (IIa) = P 1 ∪ P 2 ∪ P 8,

Ω̂
(IIb)

= (Ω2∪P 6∪P 7)∪Ω̃
(Ib)∪Ω̃

(Ic)
, P (IIb) = P 3∪P 4∪P 8.

(13)

• l = III — one macro-element:

Ω(III) = Ω̃
(IIa) ∪ Ω̃

(IIb) ∪ P 8, P (III) = P 1 ∪ P 2 ∪ P 3 ∪ P 4. (14)

2.4. Orthogonal Projection at Macro-element Interfaces

As stated in Subsection 2.2, the size of a macro-element Ñ × Ñ , as
well as the efficiency of the reduction process depends on q and NP —
the number of FEM variables at the interface that couple the macro-
element to its surroundings. The value of NP can be decreased by
means of the operation called the orthogonal projection [3, 9, 10], which
is applied prior to the MOR procedure. In order to proceed with the
description of orthogonal projection the tangential electric field ~E

(k)
t

at the port Pk in the local coordinates (q1, q2) and corresponding unit
vectors (~i1, ~i2) is expanded into a series of orthogonal functions:

~E
(k)
t (q1, q2) =

N
(k)
1i∑

i=0

~i1a
(k)
1i e1i(q1, q2) +

N
(k)
2j∑

j=0

~i2a
(k)
2j e2j(q1, q2). (15)

In terms of 2-D FEM edge basis functions at the port Pk it can be
expressed in the the following vectorial form:

E(k)
t =

N ′
Pk∑

i=1

a
(k)
i e(k)

t,i (16)
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where k and i denote port and mode indices, respectively, a
(k)
i is the

amplitude of the i-th orthogonal basis vector e(k)
t,i discretized on a 2-

D FEM mesh. The expansion (16) is truncated to only a few low-
order terms that have the strongest impact on the solution accuracy,
therefore N ′

Pk ¿ NPk, where NPk is the number of unknown FEM
coefficients at the port Pk.

The orthogonal projection of the tangential electric fields at each
port Pk is performed by means of the projection basis EPk comprising
N ′

Pk rows of orthogonal vectors e(k)
t,i of the lengths NPk. As a result,

NPk unknown coefficients of the FEM basis functions in vectors ePk

are replaced with vectors e′Pk = ET
PkePk, each of them comprising N ′

Pk

unknown amplitudes a
(k)
i of the orthogonal basis e(k)

t,i . These vectors
can be combined together for all ports P1, . . . , PN and written in a
compact form as:

eP = [eP1 . . . ePk . . . ePN
]T −→ e′P =

[
e′P1 . . . e′Pk . . . e′PN

]T
. (17)

The lengths of the above vectors are:

NP =
N∑

k=1

NPk −→ N ′
P =

N∑

k=1

N ′
Pk (18)

The system resulting from the orthogonal projection for combined
unknowns (17) is derived from the initial FEM system (3):

([
K′

P Ŝ′TK
Ŝ′K K̂

]
+ k2

0

[
M′

P Ŝ′TM
Ŝ′M M̂

])[
e′P
ê

]
=

[
b′P
0

]
, (19)

where

K′
P =ET

PKPEP , M′
P =ET

PMPEP , Ŝ′K = ET
P ŜK , Ŝ′M = ET

P ŜM (20)

The subsequent model-order reduction is performed according to
the same procedure as the one presented in Equations (3)–(9) after
introducing the primed elements derived above. Since N ′

Pk ¿ NPk

and consequently N ′
P ¿ NP the projection significantly reduces the

number of unknowns at the ports of a macro-element, the column rank
of orthonormal basis V as well as the resulting size of a macro-element:

Ñ ′ = qN ′
P ¿ Ñ , where Ñ = qNP . (21)

2.4.1. Modal Expansion

The ports bounded by physical boundaries may be considered as cross-
sections of short waveguides. Referring to Figure 2 this takes place for
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ports P1 . . . P4 and P8. In such cases the distribution of the tangential
electric field at the ports can be expressed as a modal expansion
based on orthogonal waveguide TE and TM modes. This case was
considered in [3]. The modal basis is computed at each port separately,
either analytically, or numerically as a solution of a 2-D vector FEM
eigenvalue problem. In the current paper the modal basis is derived
analytically. Once the model basis has been determined, the next step
is the projection onto the 2-D FEM basis. This is done using a general
framework outlined in the next section.

2.4.2. Functional Expansion

As noted in the introduction, the modal expansion restricts the
applicability of compression of macro-element boundaries to the
situation where the port is a cross-section of a waveguide. Greater
flexibility can be achieved if we admit that the port is not associated
with a waveguide, but it is just a fictitious interface introduced inside
the computational domain. Examples of such generalized ports are
contours P5, P6 and P7 given in Figure 2. To explain the port
compression procedure for such cases we shall use an example. Figure 3
shows a discontinuity sandwiched between two PEC planes. The
discontinuity causes complex field distribution in its surroundings. In
order to perform MOR locally in the vicinity of this discontinuity
we separate it from the rest of the computational domain using four
fictitious interfaces P1 . . . P4 serving as the macro-element ports. Since
these ports do not extend to the physical boundaries of the domain,
a modal expansion can not be applied. However, if the interfaces are
chosen in such a way that they conform to the constant-value planes
of a local rectangular (or any other separable) coordinate system, the
expansion in each dimension can be performed independently using

Figure 3. The discontinuity bounded by four fictitious interfaces
P1 . . . P4 and two PEC-walls.
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a complete set of functions. In our case we assume PEC at the top
and the bottom of the region, so the expansion in the y-direction can
be carried out using Fourier series. The expansion in other directions
may use a different series. For this paper we have chosen Legendre
polynomials, but other choices are also possible. Also each field
components can be treated separately.

To sum up, the functional expansion at each of the ports is derived
for the local system of coordinates (x, y, z), shown in Figure 3, in the
following form:

~E
(k)
t (x, y) =

N
(k)
Lx∑

i=0

N
(k)
Tx∑

j=0

~ixa
(k)
x,ijex,ij(x, y)

+
N

(k)
Ly∑

i=0

N
(k)
Ty∑

j=0

~iya
(k)
y,ijey,ij(x, y) for k = 1, 2

~E
(k)
t (z, y) =

N
(k)
Lz∑

i=0

N
(k)
Tz∑

j=0

~iza
(k)
z,ijez,ij(z, y)

+
N

(k)
Ly∑

i=0

N
(k)
Ty∑

j=0

~iya
(k)
y,ijey,ij(z, y) for k = 3, 4

(22)

where
ex,ij(x, y) = Li(x) sin(jkyy) ey,ij(x, y) = Li(x) cos(jkyy)
ez,ij(z, y) = Li(z) sin(jkyy) ey,ij(z, y) = Li(z) cos(jkyy)

(23)

The wave number for the trigonometric expansion along direction y is
ky = π

y2−y1
. The Legendre polynomials of i-th order Li(x), Li(z) can

be calculated using the following expressions:

Li(x) = Pi

(
x− x1

x2 − x1

)
, Li(z) = Pi

(
z − z1

z2 − z1

)

Pi(t) = (−1)i
i∑

k=0

(
i

k

)(
i + k

k

)
(−t)k

(24)

The overall number of expansion terms in the vectorial form (16) is:

N ′
Pk =

(
N

(k)
Lx + 1

)
N

(k)
Tx +

(
N

(k)
Ly + 1

)(
N

(k)
Ty + 1

)
for k = 1, 2

N ′
Pk =

(
N

(k)
Lz + 1

)
N

(k)
Tz +

(
N

(k)
Ly + 1

)(
N

(k)
Ty + 1

)
for k = 3, 4

(25)
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3. NUMERICAL RESULTS

In this section we shall illustrate the proposed reduction method
through two numerical examples. All the computations were performed
on a Intel i7 processor and 16-GB RAM employing curvilinear
tetrahedral elements and the third order vector basis functions [16].

3.1. Example 1: Three-pole Combline Filter

The first case deals with a three-pole combline filter in the WR-
90 waveguide, which has already been addressed in [18] using a
hybrid Finite-Difference Mode-Matching method. It contains 8 axially
symmetrical metallic posts of a radius 2 mm (all dimensions are
provided in Figure 4(a)). The goal of the simulation was to compute
the transmission and reflection coefficients over the range from 10
to 12GHz assuming the TE10 mode excitation. The computational
domain was discretized using 10193 curvilinear tetrahedral third
order elements, which resulted in 177000 degrees of freedom and
1.35 · 107 nonzero elements in each of the FEM matrices. First,
the filter was simulated by means of the standard FEM formulation
without employing the reduction scheme in order to generate the
reference results. The computation time for one frequency point is
approximately 13 sec, which results in 661 sec (1309 sec) for the whole
51 (101) frequency point (fp) characteristic.

(a) (b)

Figure 4. (a) The scheme of the WR-90 combline filter, h1 = 3.63mm,
h2 = 4.53 mm, l1 = 20.902mm, l2 = 19.802mm, r = 2mm, a = 14 mm.
(b) S-parameters of the filter computed using standard FDTD [18],
FEM and FEM-MOR — the proposed MOR approach.



Progress In Electromagnetics Research, Vol. 139, 2013 755

Then, the structure was analyzed by means of the proposed
multilevel reduction scheme using the FEM mesh generated previously.
Four cubicoid subregions were selected and separated from the rest
of the computational domain using for each of them four fictitious
walls of the dimension 14 mm × 10.16 mm, as shown in Figure 4(a).
Each subregion contains two cylindrical posts. The tangential electric
field on each of the walls was projected onto a subspace spanned by
10 orthogonal functions (N ′

Pk = 10 for k = 1 . . . 4). In effect, the
number of variables at each of the subregion interfaces was reduced
from approximately 1400 to 40. The tangential field on the input and
output ports has been projected onto a subspace consisting only of
the excitation mode — TE10. Afterwards, the first level reduction
was carried out in four subspaces using q = 5, which generated four
macro-elements of the size 200 × 200. The interfaces for the second
level reduction were selected so as to coincide with the input and
output ports of the structure. As a result, the region which undergoes
reduction at the second level consists of the four macro-elements
created in the first reduction and the rest of the computational domain.
We used the reduction order q = 18 and the number of variables at the
external ports was p = 2, so the size of the resultant matrix after the
second reduction was just 38. As the result of the proposed approach,
the overall CPU time for 101 frequency points dropped from 1309 sec
to 55 sec, which makes the present technique over 24 times faster than
the original FEM (Table 1). Figure 4(b) depicts the S-parameters
of the structure obtained by means of the proposed MOR approach
compared with the standard FDTD [18] and FE methods. A very
good agreement can be observed over the entire bandwidth.

Table 1. Comparison of the performance of the three-pole combline
filter analysis for the standard FEM and the proposed algorithm a
multilevel FEM-MOR.

Standard FEM FEM-MOR

Number of unknowns 177000 38

MOR time - 55 sec

Simulation time for the

whole characteristic at 51 (101) fp
661 (1309) sec 0.02 (0.04) sec

The speedup for 51 (101) fp 1 12 (24)

3.2. Example 2: Coupled-resonator Waveguide Filter

The next test involves computing the S-parameters of the TE10 mode
excitation in a coupled-resonator waveguide filter (Figure 5(a)), whose
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dimensions are provided in [19]. Instead of the metallic post in the
center of the main cavity, we have used an incomplete-height bow-tie
metallic post [20], which allows for tuning the filter.

(a) (b)

Figure 5. (a) The top view of the coupled-resonator waveguide filter,
r1 = 1mm, r2 = 2 mm, a = 11.5mm, b = 10.5 mm. The height of the
bow-tie post is 9 mm. (b) S-parameters of the filter computed using
standard FEM and FEM-MOR.

We have analyzed the filter by means of the standard FEM,
the two-level MOR (FEM-MOR2) and the three-level MOR (FEM-
MOR3). As in the previous example, the results obtained by means
of the standard FEM serve as a reference. In the FEM-MOR3 case
the macro-element at the first, lowest level covered the Ω1 subdomain
in order to capture the behavior of the electric field in the vicinity of
the bow-tie post. It is separated from the rest of the structure using
four fictitious walls (P8), on which the electric field is projected on the
subspace spanned by 15 functions (N ′

Pk = 15 for k = 1 . . . 4). At the
second level 5 subdomains are subject to the reduction: Ω̃1 ∪ Ω2 ∪ P ′

8
and Ω3 . . . Ω6. They were separated using internal ports placed in
the middle of the irises (P ′

3 . . . P ′
7). Each of them was projected onto

a subspace spanned by 9 modes. At the third level the reduction
covers the whole computational domain, this is to say, it includes: five
macro-elements created at the second reduction level and the internal
ports P 3 . . . P 7. The interface for the macro-element created at the
third reduction level is composed of the excitation ports P1, P2 on
which the electric field is projected on the subspace spanned by 9
modes. In this case the proposed approach allowed us to achieve the
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speedup by a factor of 27 † over the standard FEM (Table 2) and the S-
parameters computed using both methods are almost indistinguishable
(Figure 5(b)). In FEM-MOR2 the first reduction level is omitted, so
this approach begins with creating 5 macro-elements: Ω1∪Ω2∪P ′

8 and
Ω3 . . . Ω6. The second reduction level is the same as the third level
of the FEM-MOR3 case. Table 2 shows that FEM-MOR3 is more
than 4 times faster than FEM-MOR2, which proves that in complex
structures it is profitable to employ the functional expansion and the
multilevel reduction.

Table 2. Comparison of the performance of the coupled-resonator
waveguide filter analysis for the standard FEM and the proposed
algorithm FEM-MOR2 and FEM-MOR3.

Standard FEM FEM-MOR2 FEM-MOR3

Number of unknowns 440000 234 234

MOR time(s) - 1145 243

Simulation time for

the whole characteristic

at 51 (101) fp

3310 (6555) sec 0.24 (0.47) sec 0.24 (0.47) sec

The speedup for

51 (101) fp
1 3 (6) 13.6 (27)

4. CONCLUSION

In this paper a multilevel model order reduction method has been
presented. The method involves creation of nested macro-elements
and operates directly on the system of equations obtained using the
standard FEM formulation. The efficiency of the reduction scheme is
enhanced by means of the operation called the boundary compression,
which is achieved via projection of the field onto a set of functions
at the macro-element boundaries and gives the benefit of smaller
macro-elements. Since the reduction and functional projection do not
introduce any frequency-dependent terms into the system of equations,
they are performed only once for the whole frequency sweep. The
numerical tests prove that the proposed method results in significant
reduction of the number of variables, the memory usage and the
simulation time.

† The speedup value takes into account the time needed to create multilevel reduction.
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