Vol. 134
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2012-11-25
Target Recognition for Multi-Aspect SAR Images with Fusion Strategies
By
Progress In Electromagnetics Research, Vol. 134, 267-288, 2013
Abstract
Two fusion strategies for target recognition using multi-aspect synthetic aperture radar (SAR) images are presented for recognizing ground vehicles in MSTAR database. Due to radar cross-section variability, the ability to discriminate between targets varies greatly with target aspect. Multi-aspect images of a given target are used to support recognition. In this paper, two fusion strategies for target recognition using multi-aspect SAR images are proposed, which are data fusion strategy and decision fusion strategy. The recognition performance sensitivity to the number of images and the aspect separations is analyzed for those two target recognition strategies. The two strategies are also compared with each other in probability of correct classification and operating efficiency. The experimental results indicate that if we have a small number of multi-aspect images of a target and the aspect separations between those images are proper, the probability of correct classification obtained by the two proposed strategies can be advanced significantly compared with that obtained by the method using single image.
Citation
Ruo-Hong Huan, and Yun Pan, "Target Recognition for Multi-Aspect SAR Images with Fusion Strategies," Progress In Electromagnetics Research, Vol. 134, 267-288, 2013.
doi:10.2528/PIER12100304
References

1. Mohammadpoor, M., R. S. A. Raja Abdullah, A. Ismail, and A. F. Abas, "A circular synthetic aperture radar for on-the-ground object detection," Progress In Electromagnetics Research, Vol. 122, 269-292, 2012.

2. Ross, T., S. Worrell, V. Velten, J. Mossing, and M. Bryant, "Standard SAR ATR evaluation experiments using the MSTAR public release data set," Proc. SPIE, Vol. 3370, 566-573, 1998.

3. Zhou, J., Z. Shi, X. Cheng, and Q. Fu, "Automatic target recognition of SAR images based on global scattering center model," IEEE Trans. on Geoscience and Remote Sensing, Vol. 49, No. 10, 3713-3729, 2011.

4. Sandirasegaram, N. and R. Englisth, "Comparative analysis of feature extraction (2D FFT and wavelet) and classification (Lp metric distances, MLP NN, and HNeT) algorithms for SAR imagery," Proc. SPIE, Vol. 5808, 314-325, 2005.

5. Nilubol, C. and Q. H. Pham, "Translational and rotational invariant hidden Markov model for automatic target recognition," Proc. SPIE, Vol. 3374, 179-185, 1998.

6. O'Sullivan, J. A., M. D. DeVore, V. Kedia, and M. I. Miller, "SAR ATR performance using a conditionally Gaussian model," IEEE Trans. on Aerospace and Electronic Systems, Vol. 37, No. 1, 91-108, 2001.

7. Brown, M. Z., "Analysis of multiple-view Bayesian classification for SAR ATR," Proc. SPIE, Vol. 5095, 265-274, 2003.

8. Brendel, G. and L. Horowitz, "Benefits of aspect diversity for SAR ATR: Fundamental and experimental results," Proc. SPIE, Vol. 4053, 567-578, 2000.

9. Bhanu, B. and G. Jones, "Exploiting azimuthal variance of scatterers for multiple look SAR recognition," Proc. SPIE, Vol. 4727, 290-298, 2002.

10. Ettinger, G. and W. Snyder, "Model-based fusion of multi-look SAR for ATR," Proc. SPIE, Vol. 4727, 277-289, 2002.

11. Snyder, W. and G. Ettinger, "Performance models for hypothesis-level fusion of multi-look SAR ATR," Proc. SPIE, Vol. 5095, 396-407, 2003.

12. Vespe, M., C. Baker, and H. Griffiths, "Aspect dependent drivers for multi-perspective target classification," IEEE Conference on Radar, 256-260, 2006.

13. Anagnostopoulos, G. C., "SVM-based target recognition from synthetic aperture radar images using target region outline descriptors," Nonlinear Analysis, Vol. 71, e2934-e2939, 2009.

14. Wang, B., Y. Huang, J. Yang, and J. Wu, "A feature extraction method for synthetic aperture radar (SAR) automatic target recognition based on maximum interclass distance," Sci. China Tech. Sci., Vol. 54, 2520-2524, 2011.

15. Liu, M., Y. Wu, P. Zhang, Q. Zhang, Y. Li, and M. Li, "SAR target configuration recognition using locality preserving property and Gaussian mixture distribution," IEEE Trans. on Geoscience and Remote Sensing Letters, Vol. 10, No. 2, 268-272, 2012.

16. Park, J., S. Park, and K. Kim, "New discrimination features for SAR automatic target recognition," IEEE Geoscience and Remote Sensing Letters, Vol. PP, No. 99, 1-5, 2012.

17. Chang, Y.-L., C.-Y. Chiang, and K.-S. Chen, "SAR image simulation with application to target recognition," Progress In Electromagnetics Research, Vol. 119, 35-57, 2011.

18. Zhao, Q., J. C. Principe, V. L. Brennan, D. Xu, and Z. Wang, "Synthetic aperture radar automatic target recognition with three strategies of learning and representation," Opt. Eng., Vol. 39, No. 5, 1230-1244, 2000.

19. Zhao, Q. and J. C. Principe, "Support vector machines for SAR automatic target recognition," IEEE Trans. on Aerospace and Electronic Systems, Vol. 37, No. 2, 643-654, 2001.

20. Yang, W., Y. Liu, G.-S. Xia, and X. Xu, "Statistical mid-level features for building-up area extraction from high-resolution PolSAR imagery," Progress In Electromagnetics Research, Vol. 132, 233-254, 2012.

21. Vapnik, V. N., "An overview of statistical learning theory," IEEE Trans. on Neural Networks, Vol. 10, No. 5, 988-999, 1999.

22. Hsu, C. W. and C. J. Lin, "A comparison of methods for multiclass support vector machines," IEEE Trans. on Neural Networks, Vol. 13, No. 2, 415-425, 2002.

23. Huan, R. and Y. Pan, "Decision fusion strategies for SAR image target recognition," IET Radar, Sonar and Navigation, Vol. 5, No. 7, 747-755, 2011.

24. Huan, R. and R. Yang, "SAR automatic target recognition based on decision fusion," 7th European Conference on Synthetic Aperture Radar (EUSAR), 1-4, 2008.

25. Huan, R., K. Mao, Y. Lei, J. Yu, and M. Xia, "SAR target recognition with data fusion," 2010 WASE International Conference on Information Engineering, Vol. 2, 19-23, 2010.

26. Rizvi, S. A. and N. M. Nasrabadi, "Fusion of automatic target recognition algorithms," Proc. SPIE, Vol. 4726, 122-132, 2002.

27. Rizvi, S. A. and N. M. Nasrabadi, "Fusion techniques for automatic target recognition," Proc. IEEE Conf. Applied Imagery Pattern Recognition Workshop, 27-32, Washingdon DC, USA, 2003.