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Abstract—Two fusion strategies for target recognition using multi-
aspect synthetic aperture radar (SAR) images are presented for
recognizing ground vehicles in MSTAR database. Due to radar cross-
section variability, the ability to discriminate between targets varies
greatly with target aspect. Multi-aspect images of a given target are
used to support recognition. In this paper, two fusion strategies for
target recognition using multi-aspect SAR images are proposed, which
are data fusion strategy and decision fusion strategy. The recognition
performance sensitivity to the number of images and the aspect
separations is analyzed for those two target recognition strategies.
The two strategies are also compared with each other in probability
of correct classification and operating efficiency. The experimental
results indicate that if we have a small number of multi-aspect images
of a target and the aspect separations between those images are proper,
the probability of correct classification obtained by the two proposed
strategies can be advanced significantly compared with that obtained
by the method using single image.

1. INTRODUCTION

Synthetic aperture radar (SAR) image target recognition is a key issue
in SAR image interpretation and analysis. Before target recognition,
detecting targets in images is generally required [1]. When a target is
detected and its position is known in the SAR image, target recognition
is then implemented to achieve its class and type [2, 3]. Preprocessing,
feature extraction, and classification are three essential steps in
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target recognition [4, 5]. Feature extraction and classification are the
most important two steps which mainly determine the recognition
performance of a target recognition method.

SAR images are highly sensitive to target aspect, due to shadowing
effects, interaction of the signature with the environment, projection
of a three dimensional scene onto a slant plane and other reasons due
to the aspect dependence of radar cross-sections [6, 7]. The ability
to discriminate between targets in SAR images also varies greatly
with target aspect. Multiple images of a target in different aspects,
i.e., multi-aspect images, may provide more robust classification
performance than single image. Thus, we take two questions into
account, which are how many multi-aspect images are required to
achieve significant improvement and what is the aspect separation
between them.

Brendel and Horowitz [8] presented an analysis of the fundamental
benefits of aspect diversity for SAR automatic target recognition
(ATR). Multi-aspect diversity was incorporated into an existing SAR
ATR classifier, which was a mean squared error (MSE)-template-based
ATR system. Then, multi-aspect processing can be implemented by
summing the MSE scores of the individual aspect images of the same
target to form the result of having one grand multi-aspect reference
image. Multiple views separated by 60 degree up to 4 aspects for a total
of 180 degree from the first view were used in their experiments. And
performance enhancement by the aspect diversity for SAR ATR was
illustrated in the results. Bhanu and Jones [9] used the fundamental
azimuthal variance of SAR scatterer locations as the basis for a
principled approach to multiple look angle SAR recognition. The
experimental results in the paper demonstrated that SAR recognition
results at different azimuths are independent. In addition, they show
that decision level fusion of two observations at different look angles
can substantially increase SAR recognition performance. Ettinger and
Snyder [10, 11] developed model-based approaches to SAR ATR by
fusing multiple images of same vehicle collected at different angles.
Two high-level multi-aspect fusion approaches, namely decision-level
and hypothesis-level fusion were evaluated quantitatively. They
demonstrated that fusing multiple looks gives significant improvements
in probability of identification even with only two or three SAR looks
differing by small angles. Brown [7] developed a Bayesian approach to
multi-aspect target classification and considered the aspect dependence
of ATR performance. The author addressed four specific questions
about multi-aspect target recognition, and discussed the classification
performance benefits by employing at most three incoherent images of
a target and with the angular separation of 5 degree, 15 degree, 45
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degree and 60 degree. Vespe et al. [12] developed a multi-perspective
target classification method, which used Function Neural Networks
(RBFNNs) to combine multiple views of a target collected by different
locations. Two-perspective benefits have been illustrated in terms of
correct classification rates given by aspect diversification.

In the above literatures, various approaches have been proposed
for SAR target recognition using multi-aspect images and testified
the benefits in recognition performance by using multi-aspect images
over single image. However, the answers to the two questions about
multi-aspect target recognition were not comprehensive. Most of the
research just took two or three multi-aspect images into account.
Almost none of them discussed the effect of aspect separation of images
on the recognition performance, except literature [7] analyzed the
classification performance in four different angular separations, which
are 5 degree, 15 degree, 45 degree and 60 degree. In this paper,
two fusion strategies for target recognition using multi-aspect SAR
images are proposed, which are data fusion strategy and decision fusion
strategy. At most six views and every angular separation ranging
from 1 degree to 360 degree are considered for performance evaluation.
Ten types of ground vehicles in the Moving and Stationary Target
Acquisition and Recognition (MSTAR) public release database are
taken for experiments. The recognition performance sensitivity to
the number of images and the aspect separation of those two target
recognition strategies is analyzed. The two strategies are compared
with each other in probability of correct classification and operating
efficiency. Also, the probabilities of correct classification obtained by
the two strategies are compared with that obtained by the method
using single SAR image.

This paper is organized as follows: experimental data is presented
in Section 2. Target recognition method for SAR single image
is described in Section 3. Section 4 covers data fusion strategy
and decision fusion strategy. Experimental results and analysis are
presented in Sections 5. Section 6 concludes the paper and discusses
the future research directions.

2. DATA PREPARATION

In this paper, SAR chips included in DARPA MSTAR Program
database are used. The publicly released portion of the MSTAR
database contains SAR images of ten military vehicles, including
BMP2 (tank), BTR70 (armored car), T72 (tank), BTR 60 (armored
car), 2S1 (cannon), BRDM 2 (truck), D7 (bulldozer), T62 (tank),
ZIL 131 (truck), and ZSU 23/4 (cannon). All of those vehicles are
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 BMP2 BTR70 T 72 BTR_60 2S1

 BRDM_2 D7 T62 ZIL_131 ZSU_23/4

Figure 1. Optical images and SAR images for ten class targets.

used in our experiments. Each of the targets has views at 15◦ and 17◦
depression angles. The data in depression 17◦ are used for training
and the other for testing. There are about 190–300 different aspect
versions of each target at each depression angle. Table 1 lists the type
and sample number of training and testing set. Figure 1 depicts optical
images and SAR images for those ten class targets. Figure 2 depicts
multiple images of a target in the same depression angle but in different
aspects.

3. TARGET RECOGNITION FOR SAR SINGLE IMAGE

SAR target recognition method for single image presented in this paper
consists of three steps as shown in Figure 3, which are preprocessing,
feature extraction, and classification. The specific approaches or
algorithms used for each step are described respectively below.

3.1. Preprocessing

Some feature extraction algorithms and classification algorithms are
sensitive to location shift, rotation, and non-uniform illumination [4].
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Figure 2. Multiple images of a target in the same depression angle
but in different aspects.
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Figure 3. Diagram of SAR target recognition for single image.

Table 1. Type and sample number of training and testing set.

Training Set
Sample
Number

Testing Set
Sample
Number

BMP2 c21 233 BMP2 c21 196
BTR70 c71 233 BMP2 9563 195

T72 132 232 BMP2 9566 196
BTR 60 256 BTR70 c71 196

2S1 299 T72 132 196
BRDM 2 298 T72 812 195

D7 299 T72 s7 191
T62 299 BTR 60 195

ZIL 131 299 2S1 274
ZSU 23/4 299 BRDM 2 274

D7 274
T62 273

ZIL 131 274
ZSU 23/4 274
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(a) (b)

Figure 4. (a) and (b) depict the chip of target T72 before and after
preprocessing.

Thus, preprocessing is necessary. In this paper, we first rotate each
target to a vertical orientation using ground truth information to
bring the targets into a standardized target orientation. Then, highest
energy reflecting point of the target chip is found and located to the
centre of a new chip, the size of which is 64 pixels by 64 pixels. The
final preprocessing step is to normalize the target chips. Normalization
alters the pixel values such that, the mean intensity is zero and
the standard deviation value is one for each chip. Figures 4(a)
and (b) respectively depict the chip of target T72 before and after
preprocessing.

3.2. Feature Extraction Using Wavelet Domain PCA

Feature extraction is an important step in the target recognition
process. Feature extraction algorithms extract unique target
information or signature from each chip [13–17]. 2-D wavelet
transformation is used here to perform 3 levels decomposition to each
chip. The sketch map of 3 levels 2-D wavelet transformation is shown
in Figure 5(a), where LLi denotes low frequency component from
the outcomes of the i levels decomposition; LHi, HLi, and HHi

denote high frequency sub images which contain specific information
from the outcomes of the i levels decomposition. Figure 5(b)-2 is
the decomposition results of Figure 5(b)-1 by 3 levels 2-D wavelet
decomposition.

LL3, which contains low frequency component from the outcomes
of 3 levels decomposition of each chip is picked for the following
operation. We first transform LL3 to a 64-D column vector, as the
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Figure 5. (a) Sketch map of 3 levels 2-D wavelet transformation,
(b) decomposition results of target T72.

size of it is 8 pixels by 8 pixels originally. Then, principal component
analysis (PCA) is applied for feature extraction. Extract column
vectors transformed from LL3 from all the training chips to form a
data matrix Xm×n, where m = 64 and n is the sample number of
the training set. Then, the correlation matrix C = E[Xm×nXm×n

T ]
is calculated. By solving the eigenvalue equation λξ = Cξ, the
eigenvectors ξi and eigenvalues λi, i = 1, 2, . . . , m, are obtained. The
eigenvectors ξi with the largest p eigenvalues λi are selected as the
orthonormal vector basis of the chip database. p is supposed to be
30 here, as the probability of correct classification could attain the
highest when p = 30 in our experiments. The transformation matrix
W is formed from those p eigenvectors in the column manner, that is
W = [ξ1 ξ2 . . . ξp]T . Given an input data x, which is a certain 64-D
column vector transformed from LL3, p-D feature vectors y of the input
data x can be acquired by computing the equation y = W·x. Through
this process, we get a 30-D feature vector for each chip. Figure 6 shows
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Figure 6. Process of feature extraction.

the process of feature extraction, where left is the preprocessed image,
middle is LL3 after 3 levels 2-D wavelet decomposition and right is
feature vectors obtained by PCA algorithm.

3.3. Classification Using Support Vector Machine (SVM)

Using the extracted feature vectors, the classifier must be able to
correctly decide which class the target belongs to. In this paper, SVM
is used as classifier. SVM, as a method of learning and separating
binary classes, is superior in classification performance, and has been
in the spotlight for SAR classification or recognition [13, 18–20]. The
basic principle of SVM can be generalized as follows [19, 21]: mapping
the data to a high-dimensional Euclidean space (feature space) using a
nonlinear mapping φ : Rn → E, finding the decision surface in the new
feature space, using kernel function for nonlinear mapping. Therefore,
an arbitrary feature vector x can be classified by

f(x) = sgn

{
l∑

i=1

α∗i yiK(xi,x) + b∗
}

(1)

where xi is support vector, yi ∈ {−1, 1} is class label corresponded to
xi, K(xi, x) is kernel function, α∗i is Lagrange multiplier corresponded
to xi, b∗ is classification threshold value and sgn is the symbol function.

SVM is a binary classifier in basic. Since our goal is to identify
ten types of targets in MSTAR dataset, we need to extend it to
multi-class classifier. We first decompose the multi-class problem into
several binary problems with one-against-one scheme, and use voting
rule for decision making [22]. Gaussian kernel function K(xi, x) =
exp{− |x−xi|2

σ2 } is applied as the kernel function for SVM.
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Figure 7. Process diagram of data fusion strategy.

4. TWO FUSION STRATEGIES FOR MULTI-ASPECT
SAR IMAGES TARGET RECOGNITION

4.1. Data Fusion Strategy

In data fusion strategy, multiple images of a target in the same
depression angle but in different aspects are selected. Each image
conducts preprocessing independently. PCA is used to fuse the
preprocessed image data. Wavelet domain PCA is employed to
extract feature vectors from the fused image data. SVM is applied
to classify the extracted feature vectors to obtain recognition results.
The process diagram of data fusion strategy is shown in Figure 7,
where the implemental methods of preprocessing, feature extraction
and classification are identical with those in target recognition for SAR
single image.

4.2. Decision Fusion Strategy

In decision fusion strategy, multiple images of a target in the same
depression angle but in different aspects are selected, which is the
same as the first step in data fusion strategy. Each image conducts
preprocessing, feature extraction and classification independently.
Ranking based decision fusion approach is used to fuse the outputs
of the classifiers. The final recognition results are attained from the
output of the fuser [23, 24]. The process diagram of decision fusion
strategy is shown in Figure 8. The specific methods of preprocessing,
feature extraction and classification are the same as those in target
recognition for SAR single image.

4.3. Fusion Algorithms Used in Two Strategies

4.3.1. PCA Based Data Fusion Algorithm

PCA is a well-known statistical method that has been used for data
fusion. As it was proved to be a better fusion tool over some other
fusion algorithms (like DWT) [25], we use it here.
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Figure 8. Process diagram of decision fusion strategy.

Supposing x1, x2, x3, . . . , xN denote original image data, and
those data are all arranged by rows (supposing each image has M
pixels). N is the total number of images used in the fusion. Each
original image xj is inserted into a 2-D matrix X as its jth row. Finally,
a N -by-M 2-D matrix X is achieved. Calculate the covariance matrix
C of X. Eigenvectors of the covariance matrix can be obtained by
solving the eigenvalue equation

λξ = Cξ (2)

Normalize the eigenvector ξ1 corresponding to the largest eigenvalue
λ1 as

ξ̄1j =
ξ1j

N∑
j=1

ξ1j

(3)

where ξ1j is the jth component in ξ1. The fused image data y can be
represented by

y =
N∑

j=1

ξ̄1j · xj (4)

4.3.2. Ranking Based Decision Fusion Algorithm

Ranking based decision fusion algorithm is one of the typical
decision fusion algorithms, used for target recognition. Due to its
superior performance over other decision fusion algorithms for target
recognition [26, 27], we apply it in our experiments. Ranking based
decision fusion algorithm can be described as follows.

Suppose that we have a set of K classifiers Ck, each of which
classifies targets into one of Q distinct classes, where k = 1, 2, . . . , K.
The output vector of classifier Ck, given a target x, is represented by
a column vector:

yk = {yk,q; q = 1, 2, . . . , Q} (5)
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where the qth component of the output vector yk represents the
estimated posterior probability that target x belongs to the class q,
estimated by classifier Ck. yk,q satisfies the following two requirements:

0 ≤ yk,q ≤ 1 (6)∑

q=1,2,...,Q

yk,q = 1 (7)

The classification decision of classifier Ck is:

θk = arg max
1≤q≤Q

yk,q (8)

In ranking based decision fusion technique [26, 27], a new vector zk

is generated for the classifier Ck. In zk, each component is assigned
a score that is based on the rank of that component in the output
vector yk = {yk,q; q = 1, 2, . . . , Q}. That is, zk = R(yk), where R is
a ranking operator that takes in a vector yk = {yk,q; q = 1, 2, . . . , Q}
and substitutes it for a new vector zk = {zk,q; q = 1, 2, . . . , Q}, where
the vector components zk,q are computed as follows:
• Define a ranking vector: r = {rq; q = 1, 2, . . . , Q}.
• Set rq = 0 for all q.
• For i = 1 step 1 until Q.

Begin

ri = arg max
1≤q≤Q and q 6=ri for all i

yk,q (9)

zk,ri = Q− (i− 1) (10)

End
This process is repeated for all the contributing components. A

final decision θ is then made by employing a Bayesian decision:

zq =
1
K

K∑

k=1

zk,q (11)

θ = arg max zq
1≤q≤Q

(12)

5. EXPERIMENTAL RESULTS AND ANALYSIS

SAR signatures vary greatly with aspect, as shown previously in
Figure 2. Thus recognition performance may also be expected to
vary with target aspect. Given that this is the case, exploitation of
multi-aspect images of a target should provide more robust recognition
performance than only using single image. The number of images used
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and the aspect separation between them are two issues that affect the
final recognition performance of a target.

Our experiments are to examine the recognition performance
sensitivity of the two proposed strategies to the number of images
and the aspect separations. Probability of correct classification (PCC)
is calculated via correct classification sample number dividing by
total sample number, which is the most important measurement for
recognition performance.

The SAR chips of some aspects in the MSTAR database are
absent, so the aspect separations between neighbour chips are not 1
degree for all. For the chip absence, we use the chip closest in aspect to
substitute for the needed chip. Thus, the PCC lines received in results
may not be thoroughly precise; however, the trend of them has certain
reference value.

5.1. Results and Analysis of Data Fusion Strategy

Figure 9 shows PCC lines in data fusion strategy using different number
of multi-aspect images with the aspect separation ranging from 1
degree to 360 degree. From Figure 9, we find PCC lines are nearly
symmetrical over the aspect separation of 180 degree, when two or
three images are data fused. When two images are fused, if the aspect
separation is near 0 degree or 180 degree or 360 degree, the PCC
obtained is relatively higher. If the aspect separation is close to 90
degree or 270 degree, the PCC obtained is relatively lower. When
three images are used for data fusion, if the aspect separation is near
0 degree or 180 degree, the PCC obtained is relatively higher. If the
aspect separation is close to 60 degree or 120 degree or 240 degree or
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300 degree, the PCC obtained is relatively lower. When more than
three images are fused, PCC lines tend to decrease with the increasing
aspect separation.

Interval of aspect separation between 1 degree and 60 degree
is picked out for further observation, which is shown in Figure 10.
From Figure 10, we find the PCC lines keep probably stable in a
certain aspect separation interval, which may be smaller than 20
degree approximately. In that interval, PCC lines belonged to different
number of images are almost similar, which means PCC in that interval
has no obvious relationship with the number of used images. Out of
that aspect separation interval, the PCC lines tend to decline with
the increasing aspect separation. When the aspect separations are less
than certain values (thresholds), PCCs are higher than 95.69%, which
is the PCC of single image without data fusion drawn as the red line
in Figure 10. The thresholds vary with the number of fused images.
Table 2 lists the thresholds when two, three, four, five or six multi-
aspect images are data fused. In Table 2, we observe the thresholds
are all relatively small aspect separations. If more than two images are
fused, the thresholds are almost the same.

Table 3 lists the highest PCCs of ten class targets obtained using
different number of images in some certain aspect separations (AS) by
data fusion strategy. From Table 3, we find the highest PCCs have
little relationship with the number of fused images, but they are all in
small aspect separations.

By observing Figures 9 and 10, Tables 2 and 3, we can conclude
that if relatively small aspect separation is used in multi-aspect images
data fusion strategy, higher PCC could be obtained than that gained
from single image, and the PCC is not relevant to the number of fused
images, when relatively small number images are used. On the other,
if too large aspect separation is used in this strategy, PCC may be
decreased compared with that obtained from the single image method.

Table 2. Thresholds in data fusion strategy.

Threshold (degree)
Two images 35
Three images 25
Four images 25
Five images 28
Six images 27
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Table 3. Highest PCCs obtained in data fusion strategy (%).

Single
image

Two
images

(AS is 15◦)

Three
images

(AS is 15◦)
BMP2 92.67 94.04 92.16
BTR70 99.49 99.49 99.49

T72 86.43 96.22 97.08
BTR 60 98.46 98.97 100.00

2S1 99.64 99.64 98.91
BRDM 2 98.54 99.64 98.91

D7 98.91 99.64 99.27
T62 98.53 100.00 100.00

ZIL 131 100.00 100.00 100.00
ZSU 23/4 100.00 99.64 100.00
Average 95.69 98.00 97.75

Four
images

(AS is 10◦)

Five
images

(AS is 20◦)

Six
images

(AS is 16◦)
BMP2 93.02 92.50 94.21
BTR70 100.00 98.47 99.49

T72 96.22 99.14 98.63
BTR 60 100.00 98.97 99.49

2S1 100.00 97.45 99.27
BRDM 2 98.54 98.18 98.18

D7 99.27 99.64 99.64
T62 100.00 99.63 100.00

ZIL 131 100.00 100.00 100.00
ZSU 23/4 99.64 100.00 100.00
Average 97.81 97.88 98.38

5.2. Results and Analysis of Decision Fusion Strategy

Figure 11 shows PCC lines in decision fusion strategy with the aspect
separation ranging from 1 degree to 360 degree using different number
of multi-aspect images. From Figure 11, we find that when two images
are used, PCC is almost constant with the change of aspect separation.
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Figure 11. PCCs in decision fusion strategy using multi-aspect images
with the aspect separation ranging from 1 degree to 360 degree.

Table 4. Thresholds in decision fusion strategy.

Threshold (degree)
Two images None
Three images 241
Four images 213
Five images 158
Six images 121

When more than two images are used, PCCs are nearly constant in
certain aspect separation intervals. The more the images used for
decision fusion, the smaller the intervals are. Out of those intervals,
PCCs decrease acutely with the increasing aspect separation. When
the aspect separations are less than certain values (thresholds), PCCs
are higher than 95.69%, which is the PCC of single image drawn as the
red line in Figure 11. The thresholds vary with the number of fused
images. Table 4 lists the thresholds when different numbers of multi-
aspect images are decision fused. In Table 4, we observe the thresholds
are all relatively large aspect separations (except for two images), and
the thresholds decrease with the increasing number of images. When
two images are used for decision fusion, PCCs obtained are all higher
than the PCC of single image, which means there is no threshold when
two images are used.

Table 5 lists the highest PCCs with different number of multi-
aspect images in some certain aspect separations (AS) by decision
fusion strategy. From Table 5, we find that more images lead to higher
PCCs, and when five or more images are used, the PCCs reach 100%
in some aspect separations.

From the results in Figure 11, Tables 4 and 5, we conclude that
when a small number of images are used, multi-aspect images yield
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Table 5. Highest PCCs obtained in decision fusion strategy (%).

Single
view

Two
images

(AS is 98◦)

Three
images

(AS is 80◦)
BMP2 92.67 98.30 99.32
BTR70 99.49 100.00 100.00

T72 86.43 94.33 96.56
BTR 60 98.46 100.00 100.00

2S1 99.64 99.64 100.00
BRDM 2 98.54 98.18 100.00

D7 98.91 98.54 98.18
T62 98.53 100.00 100.00

ZIL 131 100.00 100.00 100.00
ZSU 23/4 100.00 100.00 100.00
Average 95.69 98.35 99.09

Four
images

(AS is 98◦)

Five
images

(AS is 71◦)

Six
images

(AS is 39◦)
BMP2 100.00 100.00 100.00
BTR70 100.00 100.00 100.00

T72 100.00 100.00 100.00
BTR 60 100.00 100.00 100.00

2S1 100.00 100.00 100.00
BRDM 2 100.00 100.00 100.00

D7 99.64 100.00 100.00
T62 100.00 100.00 100.00

ZIL 131 100.00 100.00 100.00
ZSU 23/4 100.00 100.00 100.00
Average 99.97 100.00 100.00

better recognition results than single image in a relatively wide aspect
separation interval. The intervals vary with the change of the number
of the used images. And in those intervals, more images result in higher
PCCs.
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5.3. Comparison of Two Strategies

We take some certain aspect separation intervals to do average of
PCCs of the two fusion strategies respectively. The aspect separation
intervals range from 5 degree to 60 degree. The average results of the
two strategies are shown in Table 6, where DaFu means data fusion

Table 6. Average PCCs in some aspect separation intervals of two
fusion strategies.

Interval
(degree)
/Method

Two
images

Three
images

Four
images

Five
images

Six
images

5/DaFu 96.90 97.01 97.03 97.05 97.06
5/DeFu 96.68 96.28 96.93 97.03 97.41
10/DaFu 97.10 97.30 97.30 97.21 97.21
10/DeFu 96.93 96.65 97.44 97.63 98.05
15/DaFu 97.35 97.41 97.34 97.33 97.41
15/DeFu 97.06 96.92 97.85 98.11 98.51
20/DaFu 97.47 97.41 97.35 97.42 97.53
20/DeFu 97.14 97.10 98.18 98.48 98.85
25/DaFu 97.49 97.26 97.26 97.40 97.46
25/DeFu 97.24 97.34 98.44 98.74 99.05
30/DaFu 97.44 96.80 96.83 97.09 97.10
30/DeFu 97.36 97.53 98.60 98.89 99.18
35/DaFu 97.29 96.09 96.35 96.61 96.63
35/DeFu 97.42 97.67 98.72 99.01 99.27
40/DaFu 97.02 95.16 95.80 96.08 96.14
40/DeFu 97.46 97.79 98.80 99.11 99.36
45/DaFu 96.59 94.24 95.21 95.58 95.58
45/DeFu 97.49 97.89 98.87 99.17 99.41
50/DaFu 95.99 93.40 94.70 95.06 94.99
50/DeFu 97.54 97.98 98.93 99.23 99.46
55/DaFu 95.30 92.72 94.22 94.56 94.43
55/DeFu 97.58 98.06 98.98 99.29 99.51
60/DaFu 94.47 92.15 93.87 94.02 93.91
60/DeFu 97.59 98.10 99.00 99.31 99.53
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Table 7. Running times for recognition of the two fusion strategies
under different number of images after preprocessing.

Method Computational Procedure Time (ms)

DaFu/2 images DaFu (2 images) + FE + Cl 5.2 + 5.9 + 1.3 = 12.4

DeFu/2 images (FE + Cl)∗2 + DeFu (2 images) (5.9 + 1.3)∗2 + 0.2 = 14.6

DaFu/3 images DaFu (3 images) + FE + Cl 11.0 + 5.9 + 1.3 = 18.2

DeFu/3 images (FE + Cl)∗3 + DeFu (3 images) (5.9 + 1.3)∗3 + 0.2 = 21.8

DaFu/4 images DaFu (4 images) + FE + Cl 16.6 + 5.9 + 1.3 = 23.8

DeFu/4 images (FE + Cl)∗4 + DeFu (4 images) (5.9 + 1.3)∗4 + 0.3 = 29.1

DaFu/5 images DaFu (5 images) + FE + Cl 21.6 + 5.9 + 1.3 = 28.8

DeFu/5 images (FE + Cl)∗5 + DeFu (5 images) (5.9 + 1.3)∗5 + 0.3 = 36.3

DaFu/6 images DaFu (6 images) + FE + Cl 27.7 + 5.9 + 1.3 = 34.9

DeFu/6 images (FE + Cl)∗6 + DeFu (6 images) (5.9 + 1.3)∗6 + 0.3 = 43.5

and DeFu represents decision fusion. By observing Table 6, we find the
average PCCs of decision fusion strategy are higher than those of data
fusion strategy in most cases, except the average PCCs obtained when
small intervals are used and less number of images are fused, which are
labeled in bold in Table 6.

Table 7 shows the running times for recognizing unknown targets
of the two fusion strategies under different number of images after
preprocessing. As the training processes of the two strategies are
identical, and the preprocessing procedures of the two strategies are
also the same, we could only consider the running times for recognition
of the two strategies after preprocessing. Computational Procedure
recorded in Table 7 describes the calculation process of the running
times of the two strategies under different number of images after
preprocessing, where DaFu means the running time of the step of data
fusion, FE means the running time of the step of feature extraction,
Cl means the running time of the step of classification, and DeFu
represents the running time of the step of decision fusion. The results
of running times calculated are listed in the column of Time. From
Table 7, we find the running time increases when the number of images
used is growing both in the two strategies. Although the running
times of the two strategies after preprocessing are relatively close, the
operating efficiency of the data fusion strategy is slightly superior to
the decision fusion strategy.

By observing Tables 6 and 7 and taking recognition rate and
running time into account, we find that, if we only have two or three
multi-aspect images of a target, and the aspect separations between the
images are small (generally less than 20 degree), data fusion strategy
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is the optimal choice for target recognition; if the aspect separations
between the images are large (within the thresholds in Table 4),
decision fusion strategy is the best choice for target recognition; if
more than three multi-aspect images are acquired, and the aspect
separations between images are within the thresholds in Table 4,
decision fusion strategy is suggested to select for target recognition.
Therefore, each of the fusion strategy appears to be better in different
situations: data fusion for low number of images and small target
aspect separations, and decision fusion for high number of images or
large target aspect separations.

In conclusion, from the experimental results shown in this section,
we know that if we have small number of multi-aspect images (six
images are enough) and the aspect separations between those images
are adequate, the recognition rate obtained by the proposed approaches
can be advanced significantly compared with those obtained by single
image. The reason for that is the amount of information obtained
from multi-aspect images using fusion strategies is much more than
that from single image. More information allows the improvement of
recognition accuracy.

6. CONCLUSIONS AND DISCUSSING

We have investigated two different SAR image target recognition
strategies using multi-aspect images of a target in this paper. Lots
of experiments have been implemented to analyze the recognition
performance of these two strategies. We have demonstrated that the
performance of SAR image target recognition can be improved by
using the proposed two strategies, if we took a small number of multi-
aspect images of a target and the aspect separations between those
images were proper, as the recognition performance was sensitive to
the number of images and the aspect separations between them.

Our future research is to find other approaches using multi-aspect
images of a target which may exploit the essence in multi-aspect images
more efficiently and yield better outcomes. We may consider this issue
mainly from two aspects. On one hand, super-resolution reconstruction
approaches are to be studied for recognition performance improvement.
As they can reconstruct a high-resolution image containing more
details from multiple low-resolution SAR images belonged to the same
target in different aspects. On the other hand, approaches not in a
certain level but in multiple levels in SAR target recognition are taken
into account for further advancing the recognition performance.
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