Vol. 119

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2011-08-15

Modal Analysis of Metal-Stub Photonic Band Gap Structures in a Parallel-Plate Waveguide

By Ching Pin Yuan and Tsun-Hun Chang
Progress In Electromagnetics Research, Vol. 119, 345-361, 2011
doi:10.2528/PIER11050601

Abstract

This work presents a theoretical method to solve metal-stub photonic-band-gap (PBG) problems based on the multiple-scattering and modal analysis methods. The multiple-scattering method is generalized, which replaces the scattering coefficient by a mode-coupling matrix. Corresponding sizes between the full dielectric cylinder and the metal stub could be determined based on modal analysis. The metal stub can generate a similar frequency response to that of the full dielectric cylinder, implying that the metal stub is a good substitute for the dielectric cylinder. An experiment conducted at a low terahertz region verifies the theoretical predictions. This work offers a possibility to design two-dimensional photonic crystals using metal stub by adjusting its height for low terahertz applications.

Citation


Ching Pin Yuan and Tsun-Hun Chang, "Modal Analysis of Metal-Stub Photonic Band Gap Structures in a Parallel-Plate Waveguide," Progress In Electromagnetics Research, Vol. 119, 345-361, 2011.
doi:10.2528/PIER11050601
http://jpier.org/PIER/pier.php?paper=11050601

References


    1. Mendis, R. and D. Grischkowsky, "Undistorted guided-wave propagation of subpicosecond terahertz pulses," Opt. Lett., Vol. 26, No. 11, 846-848, 2001.
    doi:10.1364/OL.26.000846

    2. Mendis, R. and D. Gischkowsky, "THz interconnect with low-loss and low-group velocity dispersion," IEEE Microw. Wireless Compon. Lett., Vol. 11, No. 11, 444-446, 2001.
    doi:10.1109/7260.966036

    3. Coleman, S. and D. Grischkowsky, "Parallel plate THz transmitter," Appl. Phys. Lett., Vol. 84, No. 5, 654-656, 2004.
    doi:10.1063/1.1644923

    4. Nagel, M., P. Haring Bolivar, and H. Kurz, "Modular parallel-plate THz components for cost-efficient biosensing systems," Semicond. Sci. Technol., Vol. 20, S281-S285, 2005.
    doi:10.1088/0268-1242/20/7/019

    5. Mendis, R., "Nature of subpicosecond terahertz pulse propagation in practical dielectic-filled parallel-plate waveguides," Opt. Lett., Vol. 31, No. 17, 2643-2645, 2006.
    doi:10.1364/OL.31.002643

    6. Cooke, D. G. and P. Und Jepsen, "Optical modulation of terahertz pulses in a parallel plate waveguide," Opt. Express, Vol. 16, No. 19, 15123-15129, 2008.
    doi:10.1364/OE.16.015123

    7. Guida, G., A. de Lustrac, and A. Priou, "An introduction to photonic band gap (PBG) materials," Progress In Electromagnetics Research, Vol. 41, 1-20, 2003.
    doi:10.2528/PIER02010801

    8. Bingham, A. L. and D. R. Grischkowsky, "Terahertz 2-D photonic crystal waveguides," IEEE Microw. Wireless Compon. Lett., Vol. 18, No. 7, 428-430, 2008.
    doi:10.1109/LMWC.2008.924906

    9. Lin, C., C. Chen, G. J. Schneider, P. Yao, S. Shi, A. Sharkawy, and D. W. Prather, "Wavelength scale terahertz two-dimensional photonic crystal waveguides," Opt. Express, Vol. 12, No. 23, 5723-5728, 2004.
    doi:10.1364/OPEX.12.005723

    10. Zhao, Y. and D. Grischkowsky, "Terahertz demonstrations of effectively two-dimensional photonic bandgap structures," Opt. Lett., Vol. 31, No. 10, 1534-1536, 2006.
    doi:10.1364/OL.31.001534

    11. Shchegolkov, D. Y., C. E. Heath, and E. I. Simakov, "Low loss metal diplexer and combiner based on a photonic band gap channel-drop filter at 109 GHz," Progress In Electromagnetics Research, Vol. 111, 197-212, 2011.
    doi:10.2528/PIER10110808

    12. Butt, H., Q. Dai, T. D. Wilkinson, and G. A. J. Amaratunga, "Photonic crystals & metamaterial filters based on 2D arrays of silicon nanopillars ," Progress In Electromagnetics Research, Vol. 113, 179-194, 2011.

    13. Bingham, A., Y. Zhao, and D. Grischkowsky, "THz parallel plate photonic waveguides," Appl. Phys. Lett., Vol. 87, 051101-1-051101-3, 2005.

    14. Tarot, A.-C., S. Collardey, and K. Mahdjoubi, "Numerical studies of metallic PBG structures," Progress In Electromagnetics Research, Vol. 41, 133-157, 2003.
    doi:10.2528/PIER02010806

    15. Swillam, M. A., R. H. Gohary, M. H. Bakr, and X. Li, "Efficient approach for sensitivity analysis of lossy and leaky structures using FDTD," Progress In Electromagnetics Research, Vol. 96, 155-172, 2009.

    17. Zheng, G., B.-Z.Wang, H. Li, X.-F. Liu, and S. Ding, "Analysis of finite periodic dielectric gratings by the finite-difference frequency-domain method with the sub-entire-domain basis functions and wavelets," Progress In Electromagnetics Research, Vol. 99, 453-463, 2009.
    doi:10.2528/PIER09111502

    18. Li, J., L.-X. Guo, and H. Zeng, "FDTD method investigation on the polarimetric scattering from 2-D rough surface," Progress In Electromagnetics Research, Vol. 101, 173-188, 2010.
    doi:10.2528/PIER09120104

    19. Kusiek, A. and J. Mazur, "Hybrid finite-difference/mode-matching method for analysis of scattering from arbitrary configuration of rotationally-symmetrical posts ," Progress In Electromagnetics Research, Vol. 110, 23-42, 2010.
    doi:10.2528/PIER10092401

    20. Izadi, M., M. Z. A. Ab Kadir, C. Gomes, and W. F. Wan Ahmad, "An analytical second-FDTD method for evaluation of electric and magnetic fields at intermediate distances from lightning channel ," Progress In Electromagnetics Research, Vol. 110, 329-352, 2010.
    doi:10.2528/PIER10080801

    21. Zhang, P. F., S. X. Gong, and S. F. Zhao, "Fast hybrid FEM/CRE --- UTD method to compute the radiation pattern of antennas on large carriers," Progress In Electromagnetics Research, Vol. 89, 75-84, 2009.
    doi:10.2528/PIER08112506

    22. Vaseghi, B., N. Takorabet, and F. Meibody-Tabar, "Transient finite element analysis of induction machines with stator winding turn fault ," Progress In Electromagnetics Research, Vol. 95, 1-18, 2009.
    doi:10.2528/PIER09052004

    23. Benisty, H., D. Labilloy, C. Weisbuch, C. J. M. Smith, T. F. Krauss, D. Cassagne, A. Béraud, and C. Jouanin, "Radiation losses of waveguide-based two-dimensional photonic crystals: Positive role of the substrate ," Appl. Phys. Lett., Vol. 76, No. 5, 532-534, 2000.
    doi:10.1063/1.125809

    24. Marcuvitz, N., Waveguide Handbook, Chapter 2, McGraw-Hill, New York, 1951.

    25. Li, L.-M. and Z.-Q. Zhang, "Multiple-scattering approach to finite-sized photonic band-gap materials," Phys. Rev. B, Vol. 58, No. 15, 9587-9590, 1998.
    doi:10.1103/PhysRevB.58.9587

    26. Martin, P. A., Multiple Scattering: Interaction of Time-Harmonic Waves with N obstacles, Cambridge University Press, Cambridge, 2006.

    27. Botten, L. C., R. C. McPhedran, N. A. Nicorovici, A. A. Asatryan, C. M. de Sterke, P. A. Robinson, K. Busch, G. H. Smith, and T. N. Langtry, "Rayleigh multipole methods for photonic crystal calculations," Progress In Electromagnetics Research, Vol. 41, 21-60, 2003.
    doi:10.2528/PIER02010802

    28. Gesell, G. A. and I. R. Ciric, "Recurrence modal analysis for multiple waveguide discontinuities and its application to circular structures ," IEEE Tran. Microw. Theory Tech., Vol. 41, No. 3, 484-490, 1993.
    doi:10.1109/22.223749

    29. Yao, H.-Y. and T.-H. Chang, "Effect of high-order modes on tunneling characteristics," Progress In Electromagnetics Research, Vol. 101, 291-306, 2010.
    doi:10.2528/PIER09121603

    30. Noor Amin, A. S., M. Mirhosseini, and M. Shahabadi, "Modal analysis of multilayer conical dielectric waveguides for azimuthal invariant modes ," Progress In Electromagnetics Research, Vol. 105, 213-229, 2010.
    doi:10.2528/PIER09121602

    31. Canto, J. R., C. R. Paiva, and A. M. Barbosa, "Modal analysis of bi-isotropic H-guides," Progress In Electromagnetics Research, Vol. 111, 1-24, 2011.
    doi:10.2528/PIER10093004

    32. Jackson, J. D., Classical Electrodynamics, Chapter 10, John Wiley & Sons, New York, 1998.

    33. Economou, E. N., Green's Functions in Quantum Physics, Chapter 1, Springer-Verlag, Berlin, 2006.

    34. Yuan, C. P., S. Y. Lin, T. H. Chang, and B. Y. Shew, "Millimeter-wave Bragg diffraction of microfabricated crystal structures," Am. J. Phys., Vol. 79, No. 6, 619-623, 2011.
    doi:10.1119/1.3552145

    35. Joannopoulos, J. D., R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light, Princeton University Press, Princeton, 1995.

    36. Lourtioz, J.-M., H. Benisty, V. Berger, J.-M. Gérard, D. Maystre, and A. Tchelnokov, "Photonic Crystals: Towards Nanoscale Photonic Devices," Chapter 1, Springer-Verlag, Berlin, 2005.