Vol. 111

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2010-12-08

Properties of Phase Shift Defects in One-Dimensional Rugate Photonic Structures

By Yanyun Liu and Zhao Lu
Progress In Electromagnetics Research, Vol. 111, 213-228, 2011
doi:10.2528/PIER10110312

Abstract

We theoretically investigated optical properties of phase shift defects in onedimensional rugate photonic structures at oblique incidence. Transmission spectra and energy density distributions of such continuous gradient-index structures with phase shift defects were numerically calculated for TE and TM waves using the propagation matrix method. The study shows that when the angle of incidence increases, (1) the wavelength of the defect mode shifts to a shorter wavelength, (2) the full width at half maximum (FWHM) of the defect mode decreases for TE wave but it increases for TM wave, (3) the stop band of the rugate structure moves toward a shorter wavelength region, (4) the bandwidth is enlarged for TE wave, but it is shortened for TM wave, (5) the peak energy density increases and then drops for TE wave, while it always decreases for TM wave. The effect of number of periods of rugate structures on the energy density distribution was also examined.

Citation


Yanyun Liu and Zhao Lu, "Properties of Phase Shift Defects in One-Dimensional Rugate Photonic Structures," Progress In Electromagnetics Research, Vol. 111, 213-228, 2011.
doi:10.2528/PIER10110312
http://jpier.org/PIER/pier.php?paper=10110312

References


    1. Joannopoulos, J. D., S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Modling the Flow of Light, 2 Ed., Princeton University Press, 2008.

    2. Awasthi, S. K., U. Malaviya, S. P. Ojha, N. K. Mishra, and B. Singh, "Design of a tunable polarizer using a one-dimensional nano-sized photonic bandgap structure," Progress In Electromagnetics Research B, Vol. 5, 133-152, 2008.
    doi:10.2528/PIERB08021004

    3. Banerjee, A., "Tunable polarizer using one-dimensional nano sized photonic bandgap structure," Progress In Electromagnetics Research B, Vol. 5, 133-152, 2008.
    doi:10.2528/PIERB08021004

    4. Golmohammadi, S., Y. Rouhani, K. Abbasian, and A. Rostami, "Photonic bandgaps in quasiperiordic multilayer using Fourier transform of the refractive index profile," Progress In Electromagnetics Research B, Vol. 18, 311-325, 2009.
    doi:10.2528/PIERB09091701

    5. Srivastava, R., S. Pati, and S. P. Ojha, "Enhancement of omnidirectional reflection in photonic crystals heterostructures," Progress In Electromagnetics Research B, Vol. 1, 197-208, 2008.
    doi:10.2528/PIERB07102903

    6. Srivastava, R., K. B. Thapa, S. Pati, and S. P. Ojha, "Omni-directional reflection in one-dimensional photonic crystals," Progress In Electromagnetics Research B, Vol. 7, 133-143, 2008.
    doi:10.2528/PIERB08020601

    7. Banerjee, A., "Enhanced temperature sensing by using one-dimensional ternary photonic band gap structures," Progress In Electromagnetics Research Letters, Vol. 11, 129-137, 2009.
    doi:10.2528/PIERL09080101

    8. Wu, C.-J. and Z.-H. Wang, "Properties of defect modes in one-dimensional photonic crystals," Progress In Electromagnetics Research, Vol. 103, 169-184, 2010.
    doi:10.2528/PIER10031706

    9. Wu, C.-J., Y.-H. Chung, B.-J. Syu, and T.-J. Yang, "Band gap extension in a one-dimensional ternary metal-dielectric photonic crystal," Progress In Electromagnetics Research, Vol. 102, 81-93, 2010.
    doi:10.2528/PIER10012004

    10. Rahimi, H., A. Namdar, S. Roshan Entezar, and H. Tajalli, "Photonic transmission spectra in one-dimensional fibonacci multilayer structures containing single-negative metamaterials," Progress In Electromagnetics Research, Vol. 102, 15-30, 2010.
    doi:10.2528/PIER09122303

    11. Essadqui, A., J. Ben-Ali, D. Bria, B. Djafari-Rouhani, and A. Nougaoui, "Photonic band structure of 1D periodic composite Photonic band structure of 1D periodic composite system with left handed and right handed materials by green function approach," Progress In Electromagnetics Research B, Vol. 23, 229-249, 2010.
    doi:10.2528/PIERB10032404

    12. Deopura, M., C. K. Ullal, B. Temelkuran, and Y. Fink, "Dielectric omnidirectional visible reflector," Opt. Lett., Vol. 26, 1197-1199, 2001.
    doi:10.1364/OL.26.001197

    13. Fink, Y., J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, "A dielectric omnidirectional reflector," Science, Vol. 282, 1679-1682, 1998.
    doi:10.1126/science.282.5394.1679

    14. Winn, J. N., Y. Fink, S. Fan, and J. D. Joannopoulos, "Omnidirectional reflection from a one-dimensional photonic crystal," Opt. Lett., Vol. 23, 1573-1575, 1998.
    doi:10.1364/OL.23.001573

    15. Van Popta, A. C., M. M. Hawkeye, J. C. Sit, and M. J. Brett, "Gradient-index narrow-bandpass filter fabricated with glancing-angle deposition," Opt. Lett., Vol. 29, 2545-2547, 2004.
    doi:10.1364/OL.29.002545

    16. De Stefano, L., L. Moretti, A. Lamberti, O. Longo, M. Rocchia, A. M. Rossi, P. Arcari, and I. Rendina, "Optical sensors for vapors, liquids, and biological molecules based on porous silicon technology," IEEE Trans. Nanotechnol., Vol. 543, 49-54, 2004.
    doi:10.1109/TNANO.2004.824019

    17. Hawkeye, M. M., R. Joseph, J. C. Sit, and M. J. Brett, "Coupled defects in one-dimensional photonic crystal films fabricated with glancing angle deposition," Opt Express, Vol. 18, 13220-13226.
    doi:10.1364/OE.18.013220

    18. Hawkeye, M. M. and M. J. Brett, "Narrow bandpass optical optical filters fabricated with one-dimensionally periodic inhomogeneous thin films," J. Appl. Phys., Vol. 100, 044322, 2006.
    doi:10.1063/1.2335397

    19. Hawkeye, M. M. and M. J. Brett, "Glancing angle deposition: Fabrication properties, and applications of micro- and nanostructured thin films," J. Vac. Sci. Technol. A, Vol. 25, 1317-1335, 2007.
    doi:10.1116/1.2764082

    20. Tabunshchyk, K. V., M. M. Hawkeye, A. Kovalenko, and M. J. Brett, "Three-dimensional simulation of periodically structured thin films with uniaxial symmetry," J. Phys. D: Appl. Phys., Vol. 40, 4936-4942, 2007.
    doi:10.1088/0022-3727/40/16/027

    21. Brett, M. J. and M. M. Hawkeye, "Materials science: New materials at a glance," Science, Vol. 319, 1192-1193, 2008.
    doi:10.1126/science.1153910

    22. Lu, Z., "Efficient 4 × 4 propagation matrix method using a fourth-order symplectic integrator for the optics of one-dimensional continuous inhomogeneous materials," Progress In Electromagnetics Research Letters, Vol. 14, 1-9, 2010.
    doi:10.2528/PIERL10031501

    23. Southwell, W. H., "Spectral response calculations of rugate filters using coupled-wave theory," J. Opt. Soc. Am. A, Vol. 5, 1558-1564, 1988.
    doi:10.1364/JOSAA.5.001558

    24. Yeh, P., Optical Waves in Layered Media, John Wiley and Sons Ltd., New York, 1988.

    25. Bovard, B. G., "Rugate filter theory: An overview," Appl. Opt., Vol. 32, 5427-5442, 1993.
    doi:10.1364/AO.32.005427

    26. Abdulhalim, I., "Analytical propagtion matrix method for linear optics of arbitrary biaxial layered media," J. Opt. A: Pure Appl. Opt., Vol. 1, 646-653, 1999.
    doi:10.1088/1464-4258/1/5/311

    27. Chin, S. A., "Symplectic integrators from composite operator factorizations," Phys. Lett. A, Vol. 226, 344-348, 1997.
    doi:10.1016/S0375-9601(97)00003-0

    28. Chin, S. A. and C. R. Chen, "Gradient symplectic algorithms for solving the Schrodinger equations with time-dependent potentials," J. Chem. Phys., Vol. 117, 1409-1415, 2002.
    doi:10.1063/1.1485725

    29. Chin, S. A. and D. W. Kidwell, "Higher-order force gradient symplectic algorithms," Phys. Rev. E, Vol. 62, 8746-8752, 2000.
    doi:10.1103/PhysRevE.62.8746

    30. Berreman, D. W., "Optics in stratified and anisotropic media: 4 × 4 matrix formualtion," J. Opt. Soc. Am., Vol. 62, 502-510, 1972.
    doi:10.1364/JOSA.62.000502

    31. Lu, Z., "Accurate and efficient calculation of light propagation in one-dimensional inhomogeneous anisotropic media through extrapolation," J. Opt. Soc. Am A, Vol. 24, 236-242, 2007.
    doi:10.1364/JOSAA.24.000236

    32. Lu, Z., "Accurate calculation of reflectance spectra for thick one-dimensional inhomogeneous optical structures and media: Stable propagation matrix method," Opt. Lett., Vol. 33, 1948-1950, 2008.
    doi:10.1364/OL.33.001948

    33. Suzuki, M., Quantum Monte Carlo Methods in Condensed Matter Physics, World Scientific Pub. Co. Inc., 1994.

    34. Jin, J., The Finite Element Method in Electromagnetics, John Wiley and Sons Ltd., New York, 1993.