Vol. 111
Latest Volume
All Volumes
PIER 182 [2025] PIER 181 [2024] PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2010-12-08
Properties of Phase Shift Defects in One-Dimensional Rugate Photonic Structures
By
Progress In Electromagnetics Research, Vol. 111, 213-228, 2011
Abstract
We theoretically investigated optical properties of phase shift defects in onedimensional rugate photonic structures at oblique incidence. Transmission spectra and energy density distributions of such continuous gradient-index structures with phase shift defects were numerically calculated for TE and TM waves using the propagation matrix method. The study shows that when the angle of incidence increases, (1) the wavelength of the defect mode shifts to a shorter wavelength, (2) the full width at half maximum (FWHM) of the defect mode decreases for TE wave but it increases for TM wave, (3) the stop band of the rugate structure moves toward a shorter wavelength region, (4) the bandwidth is enlarged for TE wave, but it is shortened for TM wave, (5) the peak energy density increases and then drops for TE wave, while it always decreases for TM wave. The effect of number of periods of rugate structures on the energy density distribution was also examined.
Citation
Yanyun Liu, and Zhao Lu, "Properties of Phase Shift Defects in One-Dimensional Rugate Photonic Structures," Progress In Electromagnetics Research, Vol. 111, 213-228, 2011.
doi:10.2528/PIER10110312
References

1. Joannopoulos, J. D., S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Modling the Flow of Light, 2 Ed., Princeton University Press, 2008.

2. Awasthi, S. K., U. Malaviya, S. P. Ojha, N. K. Mishra, and B. Singh, "Design of a tunable polarizer using a one-dimensional nano-sized photonic bandgap structure," Progress In Electromagnetics Research B, Vol. 5, 133-152, 2008.
doi:10.2528/PIERB08021004

3. Banerjee, A., "Tunable polarizer using one-dimensional nano sized photonic bandgap structure," Progress In Electromagnetics Research B, Vol. 5, 133-152, 2008.
doi:10.2528/PIERB08021004

4. Golmohammadi, S., Y. Rouhani, K. Abbasian, and A. Rostami, "Photonic bandgaps in quasiperiordic multilayer using Fourier transform of the refractive index profile," Progress In Electromagnetics Research B, Vol. 18, 311-325, 2009.
doi:10.2528/PIERB09091701

5. Srivastava, R., S. Pati, and S. P. Ojha, "Enhancement of omnidirectional reflection in photonic crystals heterostructures," Progress In Electromagnetics Research B, Vol. 1, 197-208, 2008.
doi:10.2528/PIERB07102903

6. Srivastava, R., K. B. Thapa, S. Pati, and S. P. Ojha, "Omni-directional reflection in one-dimensional photonic crystals," Progress In Electromagnetics Research B, Vol. 7, 133-143, 2008.
doi:10.2528/PIERB08020601

7. Banerjee, A., "Enhanced temperature sensing by using one-dimensional ternary photonic band gap structures," Progress In Electromagnetics Research Letters, Vol. 11, 129-137, 2009.
doi:10.2528/PIERL09080101

8. Wu, C.-J. and Z.-H. Wang, "Properties of defect modes in one-dimensional photonic crystals," Progress In Electromagnetics Research, Vol. 103, 169-184, 2010.
doi:10.2528/PIER10031706

9. Wu, C.-J., Y.-H. Chung, B.-J. Syu, and T.-J. Yang, "Band gap extension in a one-dimensional ternary metal-dielectric photonic crystal," Progress In Electromagnetics Research, Vol. 102, 81-93, 2010.
doi:10.2528/PIER10012004

10. Rahimi, H., A. Namdar, S. Roshan Entezar, and H. Tajalli, "Photonic transmission spectra in one-dimensional fibonacci multilayer structures containing single-negative metamaterials," Progress In Electromagnetics Research, Vol. 102, 15-30, 2010.
doi:10.2528/PIER09122303

11. Essadqui, A., J. Ben-Ali, D. Bria, B. Djafari-Rouhani, and A. Nougaoui, "Photonic band structure of 1D periodic composite Photonic band structure of 1D periodic composite system with left handed and right handed materials by green function approach," Progress In Electromagnetics Research B, Vol. 23, 229-249, 2010.
doi:10.2528/PIERB10032404

12. Deopura, M., C. K. Ullal, B. Temelkuran, and Y. Fink, "Dielectric omnidirectional visible reflector," Opt. Lett., Vol. 26, 1197-1199, 2001.
doi:10.1364/OL.26.001197

13. Fink, Y., J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, "A dielectric omnidirectional reflector," Science, Vol. 282, 1679-1682, 1998.
doi:10.1126/science.282.5394.1679

14. Winn, J. N., Y. Fink, S. Fan, and J. D. Joannopoulos, "Omnidirectional reflection from a one-dimensional photonic crystal," Opt. Lett., Vol. 23, 1573-1575, 1998.
doi:10.1364/OL.23.001573

15. Van Popta, A. C., M. M. Hawkeye, J. C. Sit, and M. J. Brett, "Gradient-index narrow-bandpass filter fabricated with glancing-angle deposition," Opt. Lett., Vol. 29, 2545-2547, 2004.
doi:10.1364/OL.29.002545

16. De Stefano, L., L. Moretti, A. Lamberti, O. Longo, M. Rocchia, A. M. Rossi, P. Arcari, and I. Rendina, "Optical sensors for vapors, liquids, and biological molecules based on porous silicon technology," IEEE Trans. Nanotechnol., Vol. 543, 49-54, 2004.
doi:10.1109/TNANO.2004.824019

17. Hawkeye, M. M., R. Joseph, J. C. Sit, and M. J. Brett, "Coupled defects in one-dimensional photonic crystal films fabricated with glancing angle deposition," Opt Express, Vol. 18, 13220-13226.
doi:10.1364/OE.18.013220

18. Hawkeye, M. M. and M. J. Brett, "Narrow bandpass optical optical filters fabricated with one-dimensionally periodic inhomogeneous thin films," J. Appl. Phys., Vol. 100, 044322, 2006.
doi:10.1063/1.2335397

19. Hawkeye, M. M. and M. J. Brett, "Glancing angle deposition: Fabrication properties, and applications of micro- and nanostructured thin films," J. Vac. Sci. Technol. A, Vol. 25, 1317-1335, 2007.
doi:10.1116/1.2764082

20. Tabunshchyk, K. V., M. M. Hawkeye, A. Kovalenko, and M. J. Brett, "Three-dimensional simulation of periodically structured thin films with uniaxial symmetry," J. Phys. D: Appl. Phys., Vol. 40, 4936-4942, 2007.
doi:10.1088/0022-3727/40/16/027

21. Brett, M. J. and M. M. Hawkeye, "Materials science: New materials at a glance," Science, Vol. 319, 1192-1193, 2008.
doi:10.1126/science.1153910

22. Lu, Z. "Efficient 4 × 4 propagation matrix method using a fourth-order symplectic integrator for the optics of one-dimensional continuous inhomogeneous materials," Progress In Electromagnetics Research Letters, Vol. 14, 1-9, 2010.
doi:10.2528/PIERL10031501

23. Southwell, W. H., "Spectral response calculations of rugate filters using coupled-wave theory," J. Opt. Soc. Am. A, Vol. 5, 1558-1564, 1988.
doi:10.1364/JOSAA.5.001558

24. Yeh, P., Optical Waves in Layered Media, John Wiley and Sons Ltd., New York, 1988.

25. Bovard, B. G., "Rugate filter theory: An overview," Appl. Opt., Vol. 32, 5427-5442, 1993.
doi:10.1364/AO.32.005427

26. Abdulhalim, I., "Analytical propagtion matrix method for linear optics of arbitrary biaxial layered media," J. Opt. A: Pure Appl. Opt., Vol. 1, 646-653, 1999.
doi:10.1088/1464-4258/1/5/311

27. Chin, S. A., "Symplectic integrators from composite operator factorizations," Phys. Lett. A, Vol. 226, 344-348, 1997.
doi:10.1016/S0375-9601(97)00003-0

28. Chin, S. A. and C. R. Chen, "Gradient symplectic algorithms for solving the Schrodinger equations with time-dependent potentials," J. Chem. Phys., Vol. 117, 1409-1415, 2002.
doi:10.1063/1.1485725

29. Chin, S. A. and D. W. Kidwell, "Higher-order force gradient symplectic algorithms," Phys. Rev. E, Vol. 62, 8746-8752, 2000.
doi:10.1103/PhysRevE.62.8746

30. Berreman, D. W., "Optics in stratified and anisotropic media: 4 × 4 matrix formualtion," J. Opt. Soc. Am., Vol. 62, 502-510, 1972.
doi:10.1364/JOSA.62.000502

31. Lu, Z., "Accurate and efficient calculation of light propagation in one-dimensional inhomogeneous anisotropic media through extrapolation," J. Opt. Soc. Am A, Vol. 24, 236-242, 2007.
doi:10.1364/JOSAA.24.000236

32. Lu, Z., "Accurate calculation of reflectance spectra for thick one-dimensional inhomogeneous optical structures and media: Stable propagation matrix method," Opt. Lett., Vol. 33, 1948-1950, 2008.
doi:10.1364/OL.33.001948

33. Suzuki, M., Quantum Monte Carlo Methods in Condensed Matter Physics, World Scientific Pub. Co. Inc., 1994.

34. Jin, J., The Finite Element Method in Electromagnetics, John Wiley and Sons Ltd., New York, 1993.