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Abstract—We theoretically investigated optical properties of phase
shift defects in one-dimensional rugate photonic structures at oblique
incidence. Transmission spectra and energy density distributions of
such continuous gradient-index structures with phase shift defects were
numerically calculated for TE and TM waves using the propagation
matrix method. The study shows that when the angle of incidence
increases, (1) the wavelength of the defect mode shifts to a shorter
wavelength, (2) the stop band of the rugate structure moves toward a
shorter wavelength region, (3) the bandwidth is enlarged for TE wave,
but it is shortened for TM wave, (4) the full width at half maximum
(FWHM) of the defect mode decreases for TE wave but it increases
for TM wave, (5) the peak energy density increases and then drops for
TE wave, while it always decreases for TM wave. The effect of number
of periods of rugate structures on the energy density distribution was
also examined.

1. INTRODUCTION

One-dimensional photonic crystals are composed of materials with
a periodic index of refraction in only one direction [1]. The
photonic band gaps of these structures provide a way to control
the propagation of light within a range of frequency [2–11], for
example, an omnidirectional reflector has been demonstrated using
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one-dimensional periodic dielectric materials [5, 6, 12–14]. One-
dimensional rugate photonic structures, which have a sinusoidal
variation of the refractive index, have been used as optical interference
filters [15] and environmental sensors [16]. To further control the
light within the photonic band gaps of rugate structures, defects are
introduced, i.e., the refractive index is locally modified. This has been
shown in recent studies using the glancing angle deposition technique
(GLAD) [15, 17–21]. On the basis of oblique thin structure deposition
and substrate rotation, GLAD is able to fabricate continuous gradient-
index structures with localized defects at micro- or nano-scale in a
one-step way using a single optical material [15, 17–21].

A phase shift defect centered in a one-dimensional rugate structure
as a narrow bandpass filter has been fabricated using GLAD [18, 20].
In the case of normal incidence, experimental transmission spectra
were measured, and compared to theoretical transmission spectra
calculated by a characteristic matrix method using a very thin (1 nm)
layer approximation [18]. Although optical properties of such a phase
shift defect mode are also important and interesting under oblique
incidence [18, 20], both experimental and theoretical studies so far
have not been reported. The purpose of this study was to theoretically
investigate optical properties of phase shift defects in a one-dimensional
rugate structure at oblique incidence using an efficient propagation
matrix method [22]. We numerically calculated transmission spectra
and energy density distributions for TE and TM waves, and analyzed
changes of transmission spectra and energy density distributions when
the angle of incidence increases. This study may provide a better
understanding of designing narrow bandpass filters or optical amplifiers
using one-dimensional continuous gradient-index optical materials.

2. THE MODEL AND METHODS

The refractive index profile of the rugate structure with a phase shift
defect in the middle is described by [18],

n(z) =
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The average and modulation indexes are denoted by na and np,
respectively; the designed wavelength of the rugate structure, λ0, is
located within the photonic band gap; the phase angle at z = 0 and the
phase shift angle of the defect are represented by α0 and α, respectively.
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The refractive index profile of a 24-period rugate structure with a
π phase shift defect in the center is illustrated in Figure 1. The plane of
incidence was assumed to be the x-z plane, and the angle of incidence,
θ, is determined by the angle between z direction and the direction of
light incident on the interface at z = 0. The monochromatic light was
assumed to be incident from air and outgoing from glass. Parameter
values and definitions used in calculation are listed in Table 1.

To calculate transmittance and reflectance of one-dimensional
rugate structures, the coupled-mode theory and the 2 × 2 transfer

Figure 1. The refractive index profile of a rugate structure with a π
phase shift defect in the center (α0 = −90◦).

Table 1. Parameters used in calcualtions.

Symbol Value Definition
λ0 550 nm Designed wavelength of the rugate structure
na 2.0 Average refractive index
np 0.52 Modulation (perturbation) index
ni 1.0 The incident medium (air)
nt 1.53 The outgoing medium (glass)
p 137.5 nm Period of the rugate structure
d 3.3 µm Length of the rugate structure, d = 24p

α 0◦–360◦ Phase shift angle
θ 0◦–90◦ The angle of incidence
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(propagation) matrix method [23–25] have been commonly used.
When the modulation (perturbation) index (np) is small, np ¿ na,
the coupled-mode theory is able to have accurate calculations [23, 24].
While the 2 × 2 transfer matrix method generally does not have
such a restriction, numerical calculations of propagation matrices
are required, using a layer approximation that divides the whole
structure into many small layers so that each inhomogeneous layer is
approximately homogeneous. Accurately numerical calculations using
the propagation (characteristic) matrix method for a rugate structure
with a phase shift defect needs many thin layers, for example, a layer
thickness of 1 nm [18]. This may be inconvenient and time-consuming
when we want to examine the effects of different parameter values
on transmittance and reflectance. In our previous work, we have
developed an efficient propagation matrix method for anisotropic and
inhomogeneous (smoothly varying index) optical media [22]. On the
basis of [26] by Abdulhalim and [27–29] by Chin et al., we constructed
an efficient fourth-order symplectic propagation matrix and compared
its efficiency to the commonly used second-order propagation (transfer
or characteristic) matrix for a cholesteric liquid crystal [22]. Although
the developed efficient algorithm is for anisotropic and inhomogeneous
optical materials, as a matter of fact, the fourth-order symplectic
propagation matrix is also applied for isotropic and inhomogeneous
structures such as rugate structures.

For isotropic optical materials, the 4 × 4 propagation matrix
is decoupled into two 2 × 2 propagation matrices for TE and TM
waves [22, 26, 30]. The electromagnetic fields inside a rugate structure
for TE and TM waves follow:

d
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where the dielectric permittivity, the angle of incidence, the index of
medium of the monochromatic light incident from, the vacuum wave
number, and the impedance of a vacuum are denoted by ε(z), θ, ni, k0,
and η0, respectively. To solve Eqs. (2) and (3), the rugate structure are
assumed to be sliced into N layers with a layer thickness h = N/d, and
therefore the formal solutions of Eqs. (2) and (3) for a layer between
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zj and zj+1 = zj + h (j = 0−N, zN = zd) are:
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where the space-ordering operator is denoted by T. Analytical
expressions of the exponent matrix operators in Eqs. (4) and (5) are
generally not available for most gradient-index materials, therefore,
layer approximation has to be applied. When the layer thickness is
small enough, the formal solutions are approximated as,
(
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where the eigenvalue ς = (ε(zj + h/2)− (ni sin θ)2)1/2. In our previous
study [31, 32], we have showed that the propagation matrices, P2s

and P2p, in Eqs. (6) and (7) are only correct up to the second order
of the layer thickness (h). In this study, a fourth-order symplectic
integrator [22, 27–29, 33] for the layer propagation matrices was used
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to approximate the formal solutions (Eqs. (3) and (4)),
(
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where b1 = 1/(2 − s), b2 = −s/(2 − s), t1 = 1/(2(2 − s)), t2 = 1/2,
t3 = 1/2 − (s − 1)/(2(2 − s)), and s = 21/3. To evaluate the
transmittance and reflectance, we have to find the electromagnetic
fields at zd, which are propagated from z0,
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The efficient algorithm for calculating layer propagation matrix correct
up to the fourth-order of the layer thickness enables us using a
larger layer thickness without sacrificing accuracy; this study assumed
10 layers per period, i.e., h = 13.75 nm. The reflectance and
transmittance with boundary conditions of electromagnetic fields at
z0 and zd, therefore, are,

R =
|Exr|2 + cos2 θ|Eyr|2
|Exi|2 + cos2 θ|Eyi|2 , (12)

T =
nt cos θt (|Ext|2/ cos2 θt + |Eyt|2)
ni cos θ (|Exi|2/ cos2 θ + |Eyi|2) , (13)

where the index and the refractive angle of the outgoing medium are
nt and θt, respectively.

The electromagnetic density distributions are usually calculated
by the finite element method [34], but here we calculated them using
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the following formulae [24] with the help of the efficient propagation
matrix method,
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To calculate the electromagnetic fields at each position z, we first
calculated the propagation matrix at each position, and then applied
the propagation matrix to find the reflected electromagnetic fields at
z = 0. After that, we used the stored propagation matrix to advance
the electromagnetic fields from z = 0 to 0 < z ≤ d. The energy
density distributions across the rugate structure were calculated at
defect wavelengths for different angles of incidence.

3. NUMERICAL RESULTS AND DISCUSSION

Transmittance of a rugate structure without a phase shift defect at
normal incidence is illustrated in Figure 2. When the number of periods
(cycles) increases from 4 to 30, we find that a photonic stop band is
established. The designed wavelength λ0 = 550 nm is close to the
center of the stop band, and the bandwidth is about 78 nm.

Figure 2. Transmittance of a rugate structure without defects at
normal incidence (α0 = −90◦); the photonic band gap is established
when the number of periods (cycles) increases from 4 to 30.
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Figures 3(a) and (b) show transmittance of a π phase shift defect
centered in a 24-period ruagte structure with six different angles of
incidence, 0◦, 15◦, 30◦, 45◦, 60◦, and 75◦ for TE and TM waves,
respectively. At normal incidence, there is no difference between TE
and TM waves, and the defect wavelength, λdef = 553 nm, is very
close to the designed wavelength, λ0 = 550 nm. When the angle of
incidence increases, for both TE and TM waves, the defect wavelength,
λdef , shifts to a shorter wavelength, and the stop band moves toward
a range of short wavelengths. The width of stop band for TE wave
is enlarged, but for TM wave it is shortened. The peak (resonant)
transmittance, for both TE and TM waves, is close to 1 as the angle of
incidence increases from 0◦ to 60◦; at the large angle of incidence, for
example, 75◦, it reduces to 0.5 for TE wave but is still close to 1 for
TM wave. The sharp resonant transmittance due to the introduction
of a π phase shift defect provides a narrow pass band — a narrow
bandpass filter, and at oblique incidence, the narrow bandpass filter
is able to filter different wavelengths. When the angle of incidence
increases, for TE wave, the narrow passband becomes even narrower
(Figure 3(a)), which suggests that the full width at half maximum
(FWHM) decreases; while for TM wave, the narrow passband becomes
broader (Figure 3(b)), which means that FWHM increases.

Energy density distributions inside the rugate structure with a
π phase shift defect in the middle at the defect wavelength for TE
and TM waves are shown in Figures 4(a) and (b), respectively. When
the angle of incidence increases, for TE wave (Figure 4 (a)), the peak
energy density increases at the defect position, zd/2 = 1.65µm for a 24-
period structure; for TM wave (Figure 4(b)), the overall energy density
profile decreases for a 24-period structure. To further look at the subtle
difference between TE and TM waves, the maximal energy density
against different angles of incidence is plotted in Figure 5. We find
that when the angle of incidence increases, for TE wave, the maximal
energy density located at the defect wavelength increases and then
starts to drop until θ = 60◦; for TM wave, the maximal energy density
always decreases. Similar finding is observed for a 40-period structure
(Figures 4 and 5); however, the magnitude of peak energy density
at the defect wavelength for different angles of incidence is nearly 10
— 100 times higher than that of a 20-period structure. The energy
density distribution indicates that the localization of light occurs at
the center (defect position) of the rugate structure, if the wavelength
of the incident light is equal to the defect wavelength. This may provide
potential applications for optical amplifiers and nonlinear optics.

The angle dependence of the defect wavelengths and the blue shift
of stop bands for TE and TM waves may be qualitatively understood



Progress In Electromagnetics Research, Vol. 111, 2011 221

(a)

(b)

Figure 3. Transmittance of TE (a) and TM (b) waves at different
angles of incidence, θ = 0◦, 15◦, 30◦, 45◦, 60◦, 75◦.
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(a)

(b)

Figure 4. Energy density profile across the rugate structure with a
π phase shift defect at different angles of incidence for (a) TE and (b)
TM waves.

based on the coupled-mode theory to a rugate film without a phase shift
defect [23]. However we would like to point out that currently there
are no exact analytical expressions for reflectance and transmittance
for a rugate structure even in the absence of phase shift defects and in
the case of normal incidence, and this may limit our ability to give an
accurate explanation. The shift of the design wavelength (λθ) is related
to the angle of incidence (θ) and the original design wavelength (λ0)
via λθ = λ0(1− sin2 θ

n2
a

)1/2 [23]. When increasing the angle of incidence
(θ), λθ becomes smaller than λ0 and thereby the design wavelength has
a blue shift. For the rugate structure with a π phase shift defect in the
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Figure 5. The maximum energy density in the middle (defect
position) of the rugate structure against different angles of incidence
for TE and TM waves.

Figure 6. Contour plot of transmittance at normal incidence with
respect to a varying phase shift angle (α ∈ [0◦, 360◦]).

middle, because the defect wavelength (λd) is very close to the design
wavelength, the λd is expected to have a similar shift tendency as the
λ0 when the angle of incidence increases. This may explain the blue
shift behavior for the defect wavelength as well as the blue shift of the
rugate stop band. The full forbidden bandwidths for a rugate structure
without a phase shift defect for TE and TM waves are [23], ∆λ =
λ0(

np

2na
)(1− sin2 θ

n2
a

)−1/2 and ∆λ = λ0(
np

2na
)(1− 2 sin2 θ

n2
a

)(1− sin2 θ
n2
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)−1/2,
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respectively. These expressions clearly explain that when the angle of
incidence (θ) increases, the bandwidth for TE wave is enlarged and for
TM wave it is shortened.

Since the transmitted energy decreases with the increasing angle
of incidence, the peak transmittance of the defect mode for TE wave
slowly decreases. This is a similar result as illustrated in a study for
one-dimensional photonic crystals [8]. However, for TM wave, the peak
transmittance of the defect mode does not show the Brewster angle
effect — the peak transmittance decreases rapidly when the angle of

(a)

(b)

(c)

(d)

(e)

(f)

Figure 7. Contour plot of transmittance at oblique incidence
with respect to a varying phase shift angle (α ∈ [0◦, 360◦]). The
transmittance for TE wave is shown in (a) θ = 30◦, (b) θ = 60◦,
(c) θ = 75◦, and for TM wave in (d) θ = 30◦, (e) θ = 60◦, (f) θ = 75◦.
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incidence is beyond the Brewster angle. This is different from the study
in one-dimensional discrete binary photonic multilayer systems [8],
because the index of rugate structure varies continuously and the
average index is relatively high. The angle dependence patterns of
energy densities for TE and TM waves in the rugate structure may be
physically understood in terms of group velocity of the propagation of
light at defect wavelength with different incident angles, because the
group velocity is inversely related to the energy density. For TE wave,
when the angle of incidence increases, the group velocity decreases
at the defect wavelength and thus the energy density at the rugate
center increases; while for TM wave the group velocity monotonically
increases, the energy density at the defect position decreases with the
increasing angle of incidence.

To examine the effects of the defect in the rugate structure with
different phase shifts, contour plots of transmittance are illustrated in
Figures 6 (normal incidence) and Figure 7 (oblique incidence, θ = 30◦,
60◦, 75◦; Figures 6(a)–(c) for TE wave and (d)–(e) for TM wave).
When the phase shift angle (α) increases from 0◦ to 360◦, in Figure 6
(normal incidence, θ = 0◦), we find that the defect wavelength shifts
from the right edge (the longer wavelength) of the stop band to the
left edge (the shorter wavelength), and the shape of transmittance near
the π phase shift becomes very sharp. In case of oblique incidence, we
find that, when the angle of incidence (θ) increases from 30◦ to 60◦,
75◦ (Figures 7(a)–(c)), for all phase shift angles (α ∈ [0◦, 360◦]), the
width of stop band is enlarged, the peak of transmittance at the defect
wavelength decreases, and the shape of transmittance near the defect
wavelength becomes more narrow and sharp. In Figures 7(d)–(e),
opposite observations for TM wave, however, are found. The contour
plots of transmittance at normal and oblique incidence illustrate that
adjusting the phase shift angle will provide more flexibility to fabricate
narrow bandpass optical filters.

4. CONCLUSION

We have presented a detailed study of optical properties of a phase shift
defect in a rugate structure under oblique incidence. When the angle
of incidence increases, we find that: (1) the wavelength of the defect
mode shifts to a shorter wavelength, (2) the stop band of the rugate
structure moves toward a shorter wavelength region, (3) the bandwidth
is enlarged for TE wave, but it is shortened for TM wave, (4) the full
width at half maximum (FWHM) of the defect mode decreases for
TE wave but it increases for TM wave, (5) the peak energy density
increases and then drops for TE wave, while it always decreases for
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TM wave. The overall views of transmittance contour plots for all
possible phase shift angles (Figures 6 and 7) under both normal and
oblique incidence and the energy density distribution at the defect
wavelength (Figures 4 and 5) are useful for experimental designs of
narrow bandpass filters and potential nonlinear optical applications.
This study may provide a better understanding of designing narrow
band filters or optical amplifiers based on one-dimensional continuous
gradient-index optical materials.
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