Vol. 85
Latest Volume
All Volumes
PIER 181 [2024] PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
0000-00-00
Planar Slab of Chiral Nihility Metamaterial Backed by Fractional Dual/PEMC Interface
By
Progress In Electromagnetics Research, Vol. 85, 381-391, 2008
Abstract
Fields inside the chiral nihility slab which is backed by perfect electric conductor are determined. It is noted that both electric and magnetic fields exist inside the grounded chiral nihility slab when it is excited by a plane wave. Electric field inside the slab disappears for excitation due to an electric line source. Magnetic field inside the slab disappears when geometry changes to corresponding dual geometry. Dual geometry means chiral nihility slab backed by perfect magnetic conductor and excited by a magnetic line source. Using fractional curl operator, fields are determined for fractional order geometries which may be regarded as intermediate step between the two geometries which are related through principle of duality. Discussion is extended for chiral nihility slab which is backed by perfect electromagnetic conductor (PEMC).
Citation
Qaisar Naqvi, "Planar Slab of Chiral Nihility Metamaterial Backed by Fractional Dual/PEMC Interface," Progress In Electromagnetics Research, Vol. 85, 381-391, 2008.
doi:10.2528/PIER08081201
References

1. Tretyakov, S., I. Nefedov, A. Sihvola, S. Maslovski, and C. Simovski, "Waves and energy in chiral nihility," Journal of Electromagnetic Waves and Applications, Vol. 17, 695-706, 2003.
doi:10.1163/156939303322226356

2. Zhang, C. and T. J. Cui, "Negative reflections of electromagnetic waves in chiral media,", arXiv:physics/0610172.

3. Cheng, Q., T. J. Cui, and C. Zhang, "Waves in planar waveguide containing chiral nihility metamaterial," Optics Communications, Vol. 276, 317-321, 2007.
doi:10.1016/j.optcom.2007.04.053

4. Engheta, N., "Fractional curl operator in electromagnetics," Microwave and Optical Technology Letters, Vol. 17, No. 2, 86-91, February 5, 1998.
doi:10.1002/(SICI)1098-2760(19980205)17:2<86::AID-MOP4>3.0.CO;2-E

5. Chew, W. C., Waves and Fields in Inhomogenous Media, Van Nostrand Reinhold, 1990.

6. Harrington, R. F., Time-harmonic Electromagnetic Fields, McGraw-Hill Inc., 1961.

7. Hussain, A. and Q. A. Naqvi, "Fractional curl operator in chiral medium and frac-tional transmission line," Progress In Electromagnetics Research, Vol. 59, 199-213, 2006.
doi:10.2528/PIER05092801

8. Hussain, A., S. Ishfaq, and Q. A. Naqvi, "Fractional curl operator and fractional waveguides," Progress In Electromagnetics Research, Vol. 63, 319-335, 2006.
doi:10.2528/PIER06060604

9. Hussain, A., Q. A. Naqvi, and M. Abbas, "Fractional duality and perfect electromagnetic conductor (PEMC)," Progress In Electromagnetics Research, Vol. 71, 85-94, 2007.
doi:10.2528/PIER07020702

10. Hussain, A. and Q. A. Naqvi, "Perfect electromagnetic conductor (PEMC) and fractional waveguide," Progress In Electromagnetics Research, Vol. 73, 61-69, 2007.
doi:10.2528/PIER07032401

11. Faryad, M. and Q. A. Naqvi, "Fractional rectangular waveguide Progress In Electromagnetics Research,", Vol. 75, 383-396, 2007.
doi:10.2528/PIER07052803

12. Mustafa, F., M. Faryad, and Q. A. Naqvi, "Fractional dual solutions using calculus of differential forms," J. of Electromagn. Waves and Appl., Vol. 22, 399-410, 2008.
doi:10.1163/156939308784160721

13. Maab, H. and Q. A. Naqvi, "Fractional surface waveguide," Progress In Electromagnetics Research C, Vol. 1, 199-209, 2008.
doi:10.2528/PIERC08020801

14. Maab, H. and Q. A. Naqvi, "Fractional rectangular cavity resonator," Progress In Electromagnetics Research B, Vol. 9, 69-82, 2008.
doi:10.2528/PIERB08070101

15. Hussain, A., M. Faryad, and Q. A. Naqvi, "Fractional waveguide with impedance walls," Accepted for publication in Progress In Electromagnetics Research C, 2008.

16. Ivakhnychenko, M. V., E. I. Veliev, and T. M. Ahmedov, "Fractional operators approach in electromagnetic wave reflection problems," Journal of Electromagnetic Waves and Applications, Vol. 21, 1787-1802, 2007.

17. Lindell, I. V. and A. H. Sihvola, "Perfect electromagnetic conductor," Journal of Electromagnetic Waves and Applicaitons, Vol. 19, No. 7, 861-869, 2005.
doi:10.1163/156939305775468741

18. Fiaz, M. A., A. Ghaffar, and Q. A. Naqvi, "High frequency expressions for the field in the caustic region of a PEMC cylindrical reflector using Maslov’s method," J. of Electromagn. Waves and Appl., Vol. 22, 385-397, 2008.
doi:10.1163/156939308784160794

19. Gomez, A., I. Barba, A. C. L. Cabeceira, J. Represa, A. Vegas, and M. A. Solano, "Application of Schelkunoff’s method for simulating isotropic chiral free propagation: Clarifying some common errors," Journal of Electromagnetic Waves and Applications, Vol. 22, No. 5–6, 861-871, 2008.
doi:10.1163/156939308784159471

20. Faryad, M. and Q. A. Naqvi, "High frequency expressions for the field in the caustic region of a parabolic reflector coated with isotropic chiral medium," Journal of Electromagnetic Waves and Applications, Vol. 22, No. 7, 965-986, 2008.
doi:10.1163/156939308784150092

21. Panin, S. B., P. D. Smith, and A. Y. Poyedinchuk, "Elliptical to linear polarization transformation by a grating on a chiral medium," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 13, 1885-1899, 2007.

22. Hussain, A., M. Faryad, and Q. A. Naqvi, "Fractional curl operator and fractional chiro-waveguide," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 8, 1119-1129, 2007.

23. Khatir, B. N., M. Al-Kanhal, and A. Sebak, "Electromagnetic wave scattering by elliptic chiral cylinder," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 10, 1377-1390, 2005.
doi:10.1163/156939306779276866

24. Zhang, Y.-J. and E.-P. Li, "Scattering of three-dimensional chiral objects above a perfect conducting plane by hybrid finite element method," Journal of Electromagnetic Waves and Applications, Vol. 19, No. 11, 1535-1546, 2005.
doi:10.1163/156939305775701813

25. Zheng, H.-X., X.-Q. Sheng, and E. K.-N. Yung, "Computation of scattering from conducting bodies coated with chiral materials using conformal FDTD ," Journal of Electromagnetic Waves and Applications, Vol. 18, No. 11, 1471-1484, 2005.
doi:10.1163/1569393042954901

26. Zheng, H.-X., X.-Q. Sheng, and E. K.-N. Yung, "Electromagnetic scattering from three-dimensional bianisotropic objects using hybrid finite element-boundary integral method," Journal of Electromagnetic Waves and Applications, Vol. 18, No. 11, 1549-1563, 2004.
doi:10.1163/1569393042954857

27. Hillion, P., "Impedance boundary conditions on a chiral film," Journal of Electromagnetic Waves and Applications , Vol. 18, No. 3, 373-374, 2004.
doi:10.1163/156939304323085766