Vol. 77

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2007-08-15

Analysis of Transient Electromagnetic Scattering with Plane Wave Incidence Using MOD-FDM

By Baek-Ho Jung and Tapan Kumar Sarkar
Progress In Electromagnetics Research, Vol. 77, 111-120, 2007
doi:10.2528/PIER07080302

Abstract

Recently, a marching-on in degree finite difference method (MOD-FDM) was employed in the finite-difference time-domain (FDTD) formulation to obtain unconditionally stable transient responses. The objective of this work is to implement a plane wave excitation in the MOD-FDM formulation for scattering problems for an open region. This formulation has volume electric and magnetic current densities related to the incident field in Maxwell's equations explicitly. Numerical results computed by the proposed formulation are presented and compared with the solutions of the conventional FDTD method.

Citation

 (See works that cites this article)
Baek-Ho Jung and Tapan Kumar Sarkar, "Analysis of Transient Electromagnetic Scattering with Plane Wave Incidence Using MOD-FDM," Progress In Electromagnetics Research, Vol. 77, 111-120, 2007.
doi:10.2528/PIER07080302
http://jpier.org/PIER/pier.php?paper=07080302

References


    1. Kunz, K. S. and R. J. Ruebbers, The Finite Difference Time Domain Method for Electromagnetics, CRC, Boca Raton, FL, 1993.

    2. Uduwawala, D., M. Norgren, P. Fuks, and A. Gunawardena, "A complete FDTD simulation of a real GPR antenna system operating above lossy and dispersive grounds," Progress In Electromagnetics Research, Vol. 50, 209-229, 2005.
    doi:10.2528/PIER04061002

    3. Kung, F. and H. T. Chuah, "A finite-difference time-domain (FDTD) software for simulation of printed circuit board (PCB) assembly," Progress In Electromagnetics Research, Vol. 50, 299-335, 2005.
    doi:10.2528/PIER04071401

    4. Young, J. L. and R. Adams, "Excitation and detection of waves in the FDTD analysis of N-port networks," Progress In Electromagnetics Research, Vol. 53, 249-269, 2005.
    doi:10.2528/PIER04100701

    5. Gao, S., L. W. Li, and A. Sambell, "FDTD analysis of a dual-frequency microstrip patch antenna," Progress In Electromagnetics Research, Vol. 54, 155-178, 2005.
    doi:10.2528/PIER04120102

    6. Uduwawala, D., "Modeling and investigation of planar parabolic dipoles for GPR applications: A comparison with bow-tie using FDTD," J. Electromagn. Waves Applicat., Vol. 20, No. 2, 227-236, 2006.
    doi:10.1163/156939306775777224

    7. Ding, W., Y. Zhang, P. Y. Zhu, and C. H. Liang, "Study on electromagnetic problems involving combinations of arbitrarily oriented thin-wire antennas and inhomogeneous dielectric objects with a hybrid MoM-FDTD method," J. Electromagn. Waves Applicat., Vol. 20, No. 11, 1519-1533, 2006.
    doi:10.1163/156939306779274255

    8. Chen, X., D. Liang, and K. Huang, "Microwave imaging 3-D buried objects using parallel genetic algorithm combined with FDTD technique," J. Electromagn. Waves Applicat., Vol. 20, No. 13, 1761-1774, 2006.
    doi:10.1163/156939306779292264

    9. Chung, Y.-S., T. K. Sarkar, and B. H. Jung, "Solution of a time-domain magnetic-field integral equation for arbitrarily closed conducting bodies using an unconditionally stable methodology," Microwave Opt. Technol. Lett., Vol. 35, No. 6, 493-499, 2002.
    doi:10.1002/mop.10647

    10. Jung, B. H., Y.-S. Chung, and T. K. Sarkar, "Time-domain EFIE, MFIE, and CFIE formulations using Laguerre polynomials as temporal basis functions for the analysis of transient scattering from arbitrary shaped conducting structures," Progress In Electromagnetics Research, Vol. 39, 1-45, 2003.
    doi:10.2528/PIER02083001

    11. Jung, B. H., T. K. Sarkar, and Y.-S. Chung, "Solution of time domain PMCHW formulation for transient electromagnetic scattering from arbitrarily shaped 3-D dielectric objects," Progress In Electromagnetics Research, Vol. 45, 291-312, 2004.
    doi:10.2528/PIER03082502

    12. Jung, B. H., T. K. Sarkar, and M. Salazar-Palma, "Time domain EFIE and MFIE formulations for analysis of transient electromagnetic scattering from 3-D dielectric objects," Progress In Electromagnetics Research, Vol. 49, 113-142, 2004.
    doi:10.2528/PIER04022304

    13. Lee, Y.-H., B. H. Jung, T. K. Sarkar, M. Yuan, Z. Ji, and S.- O. Park, "TD-CFIE formulation for transient electromagnetic scattering from 3-D dielectric objects," ETRI Journal, Vol. 29, No. 1, 8-17, 2007.

    14. Jung, B. H., Z. Ji, T. K. Sarkar, M. Salazar-Palma, and M. Yuan, "A comparison of marching-on in time method with marching-on in degree method for the TDIE solver," Progress In Electromagnetics Research, Vol. 70, 281-296, 2007.
    doi:10.2528/PIER07013002

    15. Chung, Y.-S., T. K. Sarkar, B. H. Jung, and M. Salazar- Palma, "An unconditionally stable scheme for the finite-difference time-domain method," IEEE Trans. Microwave Theory Technol., Vol. 51, No. 3, 697-704, 2003.
    doi:10.1109/TMTT.2003.808732

    16. Shao, W., B.-Z. Wang, and Z.-J. Yu, "Space-domain finite difference and time-domain moment method for electromagnetic simulation," IEEE Trans. Electromagn. Compat., Vol. 48, No. 1, 10-18, 2006.
    doi:10.1109/TEMC.2005.861376

    17. Ding, P.-P., G. Wang, H. Lin, and B.-Z. Wang, "Unconditionally stable FDTD formulation with UPML-ABC," IEEE Microw. Wireless Compon. Lett., Vol. 16, No. 4, 161-163, 2006.
    doi:10.1109/LMWC.2006.872147

    18. Shao, W., B.-Z. Wang, and X.-F. Liu, "Second-order absorbing boundary conditions for marching-on-in-order scheme," IEEE Microw. Wireless Compon. Lett., Vol. 16, No. 5, 308-310, 2006.
    doi:10.1109/LMWC.2006.873480

    19. Shao, W., B.-Z. Wang, X.-H. Wang, and X.-F. Liu, "Efficient compact 2-D time-domain method with weighted Laguerre polynomials," IEEE Trans. Electromagn. Compat., Vol. 48, No. 3, 442-448, 2006.
    doi:10.1109/TEMC.2006.879332

    20. Alighanbari, A. and C. D. Sarris, "An unconditionally stable Laguerre-based S-MRTD time-domain scheme," IEEE Antennas Wireless Propag. Lett., Vol. 5, 69-72, 2006.
    doi:10.1109/LAWP.2006.870364

    21. Yi, Y., B. Chen, H.-L. Chen, and D.-G. Fang, "TF/SF boundary and PML-ABC for an unditionally stable FDTD method," IEEE Microw. Wireless Compon. Lett., Vol. 17, No. 2, 91-93, 2007.
    doi:10.1109/LMWC.2006.890324

    22. Luebbers, R. J., K. S. Kunz, and K. A. Chamberlin, "An interactive demonstration of electromagnetic wave propagation using time-domain finite differences," IEEE Trans. Educ., Vol. 33, No. 1, 60-68, 1990.
    doi:10.1109/13.53628

    23. Maloney, J. G. and G. S. Smith, "Modeling of antennas," Advances in Computational Electrodynamics: The Finite-Difference Time- Domain Method, 1998.

    24. Yuan, M., A. De, T. K. Sarkar, J. Koh, and B. H. Jung, "Conditions for generation of stable and accurate hybrid TD-FD MoM solutions," IEEE Trans. Microwave Theory Tech., Vol. 54, No. 6, 2552-2563, 2006.
    doi:10.1109/TMTT.2006.875823

    25. Rao, S. M., Time Domain Electromagnetics, Academic Press, 1999.