Vol. 79
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2019-02-12
Design and Analysis of Compact µ-Negative Material Loaded Wideband Electrically Compact Antenna for WLAN/WiMAX Applications
By
Progress In Electromagnetics Research M, Vol. 79, 11-22, 2019
Abstract
A compact tri-band antenna incorporated with split ring resonator array is proposed for Wireless Local Area Network (WLAN) and Worldwide interoperability for microwave access (WiMAX) applications. The proposed antenna is printed on an FR4 substrate with overall dimensions of 0.25λx0.29λ at the lowest frequency. Impedance bandwidth of the antenna is optimised by introducing slots on the top of the patch. The ground plane is engineered by placement of a split ring resonators array to induce additional resonance due to occurance of magnetic dipole moment.The antenna resonates at the frequencies of 2.4 GHz, 3.5 GHz & 5.5 GHz having bandwidths of 12.5%, 7.42% and 6.36% with gains of 2.25 dBi, 3.72 dBi and 2.71 dBi, respectively which matches well with the fabricated results. The proposed antenna shows omnidirectional radiation pattern which makes it appropriate for WLAN and WiMAX applications.
Citation
Upeshkumar Patel, and Trushit K. Upadhyaya, "Design and Analysis of Compact µ-Negative Material Loaded Wideband Electrically Compact Antenna for WLAN/WiMAX Applications," Progress In Electromagnetics Research M, Vol. 79, 11-22, 2019.
doi:10.2528/PIERM18121502
References

1. Kumar, G. and K. P. Ray, Broadband Microstrip Antennas, Artech House, 2003.

2. Waterhouse, R., Microstrip Patch Antennas: A Designer’s Guide, Springer Science & Business Media, 2013.

3. Yang, F. and Y. Rahmat-Samii, Electromagnetic Band-gap Structures in Antenna Engineering (The Cambridge RF and Microwave Engineering Series), Cambridge University Press, 2008.

4. Smith, D. R. and N. Kroll, "Negative refractive index in left-handed materials," Physical Review Letters, Vol. 85, No. 14, 2933, 2000.
doi:10.1103/PhysRevLett.85.2933

5. Alibakhshi-Kenari, M., M. Naser-Moghadasi, and R. A. Sadeghzadeh, "Bandwidth and radiation specifications enhancement of monopole antennas loaded with split ring resonators," IET Microwaves, Antennas & Propagation, Vol. 9, No. 14, 1487-1496, 2015.
doi:10.1049/iet-map.2015.0172

6. Alù, A., F. Bilotti, N. Engheta, and L. Vegni, "Subwavelength, compact, resonant patch antennas loaded with metamaterials," IEEE Transactions on Antennas and Propagation, Vol. 55, No. 1, 13-25, 2007.
doi:10.1109/TAP.2006.888401

7. Islam, M. M., M. T. Islam, M. Samsuzzaman, M. R. I. Faruque, N. Misran, and M. F. Mansor, "A miniaturized antenna with negative index metamaterial based on modified SRR and CLS unit cell for UWB microwave imaging applications," Materials, Vol. 8, No. 2, 392-407, 2015.
doi:10.3390/ma8020392

8. Upadhyaya, T. K., V. V. Dwivedi, S. P. Kosta, and Y. P. Kosta, "Miniaturization of tri band patch antenna using metamaterials," 2012 Fourth International Conference on Computational Intelligence and Communication Networks (CICN), 45-48, IEEE, November 2012.

9. Upadhyaya, T. K., S. P. Kosta, R. Jyoti, and M. Palandöken, "Novel stacked μ-negative material-loaded antenna for satellite applications," International Journal of Microwave and Wireless Technologies, Vol. 8, No. 2, 229-235, 2016.
doi:10.1017/S175907871400138X

10. Saraswat, R. K. and M. Kumar, "Miniaturized slotted ground UWB antenna loaded with metamaterial for WLAN and WiMAX applications," Progress In Electromagnetics Research B, Vol. 65, 65-80, 2016.
doi:10.2528/PIERB15112703

11. Sharma, S. K., M. A. Abdalla, and Z. Hu, "Miniaturisation of an electrically small metamaterial inspired antenna using additional conducting layer," IET Microwaves, Antennas & Propagation, Vol. 12, No. 8, 1444-1449, 2018.
doi:10.1049/iet-map.2017.0927

12. El Badawe, M., T. S. Almoneef, and O. M. Ramahi, "A true metasurface antenna," Scientific Reports, Vol. 6, 19268, 2016.
doi:10.1038/srep19268

13. Zhai, G., Z. N. Chen, and X. Qing, "Enhanced isolation of a closely spaced four-element MIMO antenna system using metamaterial mushroom," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 8, 3362-3370, 2015.
doi:10.1109/TAP.2015.2434403

14. Rezvani, M. and Y. Zehforoosh, "A dual-band multiple-input multiple-output microstrip antenna with metamaterial structure for LTE and WLAN applications," AEU - International Journal of Electronics and Communications, Vol. 93, 277-282, 2018.
doi:10.1016/j.aeue.2018.06.034

15. Singh, D. and V. M. Srivastava, "An analysis of RCS for dual-band slotted patch antenna with a thin dielectric using shorted stubs metamaterial absorber," AEU - International Journal of Electronics and Communications, Vol. 90, 53-62, 2018.
doi:10.1016/j.aeue.2018.03.039

16. Gupta, N., J. Saxena, K. S. Bhatia, and N. Dadwal, "Design of metamaterial-loaded rectangular patch antenna for satellite communication applications," Iranian Journal of Science and Technology, Transactions of Electrical Engineering, 1-11, 2018.

17. Jia, D., Y. He, N. Ding, J. Zhou, B. Du, and W. Zhang, "Beam-steering flat lens antenna based on multilayer gradient index metamaterials," IEEE Antennas and Wireless Propagation Letters, Vol. 17, No. 8, 1510-1514, 2018.
doi:10.1109/LAWP.2018.2851442

18. Upadhyaya, T. K., S. P. Kosta, R. Jyoti, and M. Palandoken, "Negative refractive index material-inspired 90-deg electrically tilted ultra wideband resonator," Optical Engineering, Vol. 53, No. 10, 107104, 2014.
doi:10.1117/1.OE.53.10.107104

19. Rajeshkumar, V. and S. Raghavan, "A compact metamaterial inspired triple band antenna for reconfigurable WLAN/WiMAX applications," AEU - International Journal of Electronics and Communications, Vol. 69, No. 1, 274-280, 2015.
doi:10.1016/j.aeue.2014.09.012

20. Cao, W., B. Zhang, A. Liu, T. Yu, D. Guo, and K. Pan, "A reconfigurable microstrip antenna with radiation pattern selectivity and polarization diversity," IEEE Antennas and Wireless Propagation Letters, Vol. 11, 453-456, 2012.

21. Johnson, M. C., S. L. Brunton, N. B. Kundtz, and J. N. Kutz, "Sidelobe canceling for reconfigurable holographic metamaterial antenna," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 4, 1881-1886, 2015.
doi:10.1109/TAP.2015.2399937

22. Pandey, G. K., H. S. Singh, P. K. Bharti, and M. K. Meshram, "Metamaterial-based UWB antenna," Electronics Letters, Vol. 50, No. 18, 1266-1268, 2014.
doi:10.1049/el.2014.2366

23. Zhang, H. T., G. Q. Luo, B. Yuan, and X. H. Zhang, "A novel ultra-wideband metamaterial antenna using chessboard-shaped patch," Microwave and Optical Technology Letters, Vol. 58, No. 12, 3008-3012, 2016.
doi:10.1002/mop.30200

24. Liu, Z. G. and Y. X. Guo, "Compact low-profile dual band metamaterial antenna for body centric communications," IEEE Antennas and Wireless Propagation Letters, Vol. 14, 863-866, 2015.
doi:10.1109/LAWP.2014.2382586

25. Taghadosi, M., L. Albasha, N. Qaddoumi, and M. Ali, "Miniaturised printed elliptical nested fractal multiband antenna for energy harvesting applications," IET Microwaves, Antennas & Propagation, Vol. 9, No. 10, 1045-1053, 2015.
doi:10.1049/iet-map.2014.0744

26. Du, G.-H., X. Tang, and F. Xiao, "Tri-band metamaterial-inspired monopole antenna with modified S-shaped resonator," Progress In Electromagnetics Research Letters, Vol. 23, 39-48, 2011.
doi:10.2528/PIERL11031515

27. Wang, Y. D., J. H. Lu, and H. M. Hsiao, "Novel design of semi-circular slot antenna with triple-band operation for WLAN/WIMAX communication," Microwave and Optical Technology Letters, Vol. 50, No. 6, 1531-1534, 2008.
doi:10.1002/mop.23422

28. Amani, N., M. Kamyab, A. Jafargholi, A. Hosseinbeig, and J. S. Meiguni, "Compact tri-band metamaterial-inspired antenna based on CRLH resonant structures," Electronics Letters, Vol. 50, No. 12, 847-848, 2014.
doi:10.1049/el.2014.0875

29. Azaro, R., E. Zeni, P. Rocca, and A. Massa, "Innovative design of a planar fractal-shaped GPS/GSM/Wi-Fi antenna," Microwave and Optical Technology Letters, Vol. 50, No. 3, 825-829, 2008.
doi:10.1002/mop.23208

30. Ali, T. and R. C. Biradar, "A compact multiband antenna using λ/4 rectangular stub loaded with metamaterial for IEEE 802.11 N and IEEE 802.16 E," Microwave and Optical Technology Letters, Vol. 59, No. 5, 1000-1006, 2017.
doi:10.1002/mop.30454

31. Zhao, Q., S.-X. Gong, W. Jiang, B. Yang, and J. Xie, "Compact wide-slot tri-band antenna for WLAN/WiMAX applications," Progress In Electromagnetics Research Letters, Vol. 18, 9-18, 2010.
doi:10.2528/PIERL10081601

32. Wang, Y. F., B. H. Sun, K. He, R. H. Li, and Y. J. Wang, "A compact tri-band antenna for WLAN/WiMAX applications," Microwave and Optical Technology Letters, Vol. 53, No. 10, 2371-2375, 2011.
doi:10.1002/mop.26254

33. Mathew, S., R. Anitha, U. Deepak, C. K. Aanandan, P. Mohanan, and K. Vasudevan, "A compact tri-band dual-polarized corner-truncated sectoral patch antenna," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 12, 5842-5845, 2015.
doi:10.1109/TAP.2015.2479216

34. Hu, W., J. J. Wu, S. F. Zheng, and J. Ren, "Compact ACS-fed printed antenna using dual edge resonators for tri-band operation," IEEE Antennas and Wireless Propagation Letters, Vol. 15, 207-210, 2016.
doi:10.1109/LAWP.2015.2480799

35. Pei, J., A. G. Wang, S. Gao, and W. Leng, "Miniaturized triple-band antenna with a defected ground plane for WLAN/WiMAX applications," IEEE Antennas and Wireless Propagation Letters, Vol. 10, 298-301, 2011.