Vol. 38
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2014-08-22
Negative Absorption Coefficient of a Weak Electromagnetic Wave Caused by Electrons Confined in Rectangular Quantum Wires in the Presence of Laser Radiation Modulated by Amplitude
By
Progress In Electromagnetics Research M, Vol. 38, 73-82, 2014
Abstract
The analytic expressions for the absorption coefficient (ACF) of a weak electromagnetic wave (EMW) by confined electrons in rectangular quantum wires (RQWs) in the presence of laser radiation modulated by amplitude are calculated by using the quantum kinetic equation for electrons with the electron-optical phonon scattering mechanism. Then, the analytic results are numerically calculated and discussed for GaAs/GaAsAl RQWs. The numerical results show that the ACF of a weak EMW in a RQW can have negative values, which means that in the presence of laser radiation (non-modulated or modulated by amplitude), under proper conditions, the weak EMW is increased. This is different from the similar problem in bulk semiconductors and from the case of the absence of laser radiation. The results also show that in some conditions, when laser radiation is modulated by amplitude, ability to increase a weak EMW can be enhanced in comparison with the use of non-modulated laser radiation.
Citation
Nguyen Thi Thanh Nhan, and Dinh Quoc Vuong, "Negative Absorption Coefficient of a Weak Electromagnetic Wave Caused by Electrons Confined in Rectangular Quantum Wires in the Presence of Laser Radiation Modulated by Amplitude," Progress In Electromagnetics Research M, Vol. 38, 73-82, 2014.
doi:10.2528/PIERM14060302
References

1. Tsu, R. and L. Esaki, "Tunneling in a finite superlattice," Appl. Phys. Lett., Vol. 22, No. 11, 562, 1973.
doi:10.1063/1.1654509

2. Harris Jr., J. S., "From bloch functions to quantum wells," J. Mod. Phys. B, Vol. 4, 1149, 1990.
doi:10.1142/S0217979290000577

3. Bau, N. Q. and T. C. Phong, "Calculations of the absorption coefficient of a weak electromagnetic wave by free carriers in quantum wells by the Kubo-Mori method," J. Phys. Soc. Jpn., Vol. 67, 3875, 1998.
doi:10.1143/JPSJ.67.3875

4. Bau, N. Q., L. Dinh, and T. C. Phong, "Absorption coefficient of weak electromagnetic waves caused by confined electrons in quantum wires," J. Korean. Phys. Soc., Vol. 51, No. 4, 1325, 2007.
doi:10.3938/jkps.51.1325

5. Bau, N. Q. and H. D. Trien, "The nonlinear absorption of a strong electromagnetic wave in lowdimensional systems," Wave Propagation, Ch. 22, 461, Intech, Croatia, 2011.

6. Bau, N. Q. and H. D. Trien, "The nonlinear absorption coefficient of strong electromagnetic waves caused by electrons confined in quantum wires," J. Korean. Phys. Soc., Vol. 56, No. 1, 120, 2010.
doi:10.3938/jkps.56.120

7. Pavlovich, V. V. and E. M. Epshtein, "Quantum theory of absorption of electromagnetic wave by free carries in semiconductors," Sov. Phys. Solid State, Vol. 19, 1760, 1977.

8. Malevich, V. L. and E. M. Epshtein, "Nonlinear optical properties of conduction electrons in semiconductors," Sov. Quantum Electronic, Vol. 1, 1468, 1974.

9. Nhan, N. V., N. T. T. Nhan, N. Van. Nghia, S. T. L. Anh, and N. Q. Bau, "Ability to increase a weak electromagnetic wave by confined electrons in quantum wells in the presence of laser radiation," PIERS Proceeding, 1054-1059, Kuala Lumpur, Malaysia, Mar. 27-30, 2012.

10. Nhan, N. T. T. and N. V. Nhan, "Calculation absorption coefficient of a weak electromagnetic wave by confined electrons in cylindrical quantum wires in the presence of laser radiation by using the quantum kinetic equation," Progress In Electromagnetics Research M, Vol. 34, 47-54, 2014.
doi:10.2528/PIERM13081207

11. Bau, N. Q. and C. Navy, "Influence of laser radiation (non-modulated and modulated) on the absorption of a weak electromagnetic wave by free electrons in semiconductor superlattices," VNU. Journal of Science, Nat. Sci., Vol. 13, No. 2, 26, 1997.

12. Mickevicius, R. and V. Mitin, "Acoustic-phonon scattering in a rectangular quantum wire," Phys. Rev. B, Vol. 48, 17194-17201, 1993.
doi:10.1103/PhysRevB.48.17194

13. Ariza-Flores, A. D. and I. Rodriguez-Vargas, "Electron subband structure and mobility trends in P-N delta-doped quantum wells in Si," Progress In Electromagnetics Research Letters, Vol. 1, 159-165, 2008.
doi:10.2528/PIERL07120607