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Negative Absorption Coefficient of a Weak Electromagnetic Wave
Caused by Electrons Confined in Rectangular Quantum Wires in the

Presence of Laser Radiation Modulated by Amplitude

Nguyen Thi Thanh Nhan* and Dinh Quoc Vuong

Abstract—The analytic expressions for the absorption coefficient (ACF) of a weak electromagnetic
wave (EMW) by confined electrons in rectangular quantum wires (RQWs) in the presence of laser
radiation modulated by amplitude are calculated by using the quantum kinetic equation for electrons
with the electron-optical phonon scattering mechanism. Then, the analytic results are numerically
calculated and discussed for GaAs/GaAsAl RQWs. The numerical results show that the ACF of a
weak EMW in a RQW can have negative values, which means that in the presence of laser radiation
(non-modulated or modulated by amplitude), under proper conditions, the weak EMW is increased.
This is different from the similar problem in bulk semiconductors and from the case of the absence
of laser radiation. The results also show that in some conditions, when laser radiation is modulated
by amplitude, ability to increase a weak EMW can be enhanced in comparison with the use of non-
modulated laser radiation.

1. INTRODUCTION

Quantum wires are one-dimensional semiconductor structures. In quantum wires, many the physical
properties of the material changes significantly from the properties of normal bulk semiconductors,
including optical properties [1, 2]. The linear absorption of a weak EMW and the nonlinear absorption
of a strong EMW in low-dimensional systems have been studied [3–6]. The influence of laser radiation on
the absorption of a weak EMW in normal bulk semiconductors, quantum wells and cylindrical quantum
wires have been investigated using the quantum kinetic equation method [7–10]. The influence of
laser radiation (non-modulated and modulated by amplitude) on the absorption of a weak EMW in
component superlattices has been investigated by using the Kubo-Mori method [11]. However, the
influence of laser radiation modulated by amplitude on the absorption of a weak EMW in RQW are
still unsolved. Therefore, in this paper, we theoretically calculate the ACF of a weak EMW caused by
electrons confined in a RQW in the presence of laser radiation modulated by amplitude by using the
quantum kinetic equation for electrons. The electron-optical phonon scattering mechanism is considered.
The results are numerically calculated for the specific case of GaAs/GaAsAl RQW. We show that the
ACF of a weak EMW in a RQW can have negative values. That means that in the presence of laser
radiation (non-modulated or modulated by amplitude), under proper conditions, the weak EMW is
increased; and in some conditions, when laser radiation is modulated by amplitude, ability to increase
a weak EMW can be enhanced in comparison with the use of non-modulated laser radiation.
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2. THE ABSORPTION COEFFICIENT OF A WEAK EMW IN RQWS IN THE
PRESENCE OF LASER RADIATION FIELD MODULATED BY AMPLITUDE

2.1. The Laser Radiation Field Modulated by Amplitude

As in [11], here we also assume that the strong EMW (laser radiation) modulated by amplitude has the
form:

�F (t) = �F1(t) + �F2(t) = �F1 sin (Ω1t+ α1) + �F2 sin (Ω2t+ α2) (1)

where, �F1 and �F2 has same direction, Ω1 and Ω2 are a bit different from each other or Ω1 ≈ Ω2;
|ΔΩ| = |Ω1 − Ω2| � Ω1,Ω2.
After some transformations, we obtain:

�F (t) = �E01 sin (Ωt+ ϕ1) (2)

with E01 =
√
F 2

1 + F 2
2 + 2F1F2 cos(ΔΩt+ Δα), ΔΩ = Ω1−Ω2, Δα = α1−α2, Ω = Ω1+Ω2

2 , ϕ1 = α+α′,
α = α1+α2

2 , tgα′ = F1−F2
F1+F2

tg(ΔΩ
2 t+ Δα

2 ).
Here, Ω is the reduced frequency (or the frequency of the laser radiation modulated by amplitude),

|ΔΩ| the modulated frequency, and �E01 the intensity of the laser radiation modulated by amplitude. In
the case that �F1, �F2, Ω1, Ω2, Ω satisfy the conditions: �F1

Ω2
1

= �F2

Ω2
2

= 1
2

�F
Ω2 , and Δα = 0, the above formulas

can be approximated as in [11].
When ΔΩ = 0, laser radiation modulated by amplitude becomes non-modulated laser radiation.

2.2. Calculations of the Absorption Coefficient of a Weak EMW in RQWs in the
Presence of Laser Radiation Modulated by Amplitude

We consider a wire of GaAs with a rectangular cross section (Lx × Ly) and a length Lz, embedded in
GaAsAl. The carriers (electron gas) are assumed to be confined by infinite potential barriers in the xOy
plane and to be free along the wire’s axis (the Oz-axis), where O is the origin. The EMW is assumed
to be planar and monochromatic, to have a high frequency, and to propagate along the x direction. In
a RQW, the state and the electron energy spectrum have the forms [12]

ψn,�,�pz =

⎧⎪⎨
⎪⎩

2eipzz√
LxLyLz

sin
nπx

Lx
sin

�πy

Ly

{
0 ≤ x ≤ Lx

0 ≤ y ≤ Ly

0 otherwise

(3)

εn,�(�pz) =
�

2p2
z

2m∗ +
�

2π2

2m∗

(
n2

L2
x

+
�2

L2
y

)
, (4)

where n and � (n, � = 1, 2, 3, . . . ) denote the quantization of the energy spectrum in the x and the y
directions, respectively. �pz = (0, 0, pz) is the wave vector of an electron along the wire’s z axis, and m∗
is the effective mass of an electron.

We consider a field of three EMWs: two laser radiations as two strong EMWs (that creates laser
radiation modulated by amplitude) with the intensities �F1 , �F2 and the frequencies Ω1, Ω2 (Ω1 ≈ Ω2);
and a weak EMW with an intensity �E02 and a frequency ω:

�E(t) = �F (t) + �E2(t) = �F1 sin (Ω1t+ α1) + �F2 sin (Ω2t+ α2) + �E02 sin (ωt) (5)

The Hamiltonian of the electron-optical phonon system in the RQW in that field of three EMWs
in the second quantization representation can be written as

H =
∑

n,�,�pz

εn,�

(
�pz − e

�c
�Az(t)

)
a+

n,�,�pz
an,�,�pz

+
∑

�q

�ω�qb
+
�q b�q

+
∑

n,�,n′,�′,�pz,�q

C�qIn,�,n′,�′(�q⊥)a+
n′,�′,�pz+�qz

an,�,�pz(b�q + b+−�q), (6)
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where e is the elemental charge, c is the velocity of light, ω�q ≈ ω0 is the frequency of an optical phonon,
(n, �, �pz) and (n′, �′, �pz + �qz) are the electron states before and after scattering, respectively, a+

n,�,�pz

(an,�,�pz) is the creation (annihilation) operator of an electron, b+�q (b�q) is the creation (annihilation)
operator of an phonon for a state having wave vector �q = (qx, qy, qz), and �qz = (0, 0, qz). C�q is the

electron — optical phonon interaction constant [3, 4],
∣∣C�q

∣∣2 = e2
�ω0

2ε0V q2

(
1

χ∞ − 1
χ0

)
, where V and ε0 are

the normalization volume and the electronic constant, χ0 and χ∞ are the static and the high-frequency
dielectric constants, respectively. �A(t) is the vector potential of field of the three EMWs. In,l,n′,l′(�q⊥) is
the electron form factor (which characterizes the confinement of electrons in a RQW). This form factor
can be written as [12]

In,�,n′,�′(�q⊥) =
32π4(qxLxnn

′)2
(
1 − (−1)n+n′

cos(qxLx)
)

[
(qxLx)

4 − 2π2(qxLx)2(n2 + n′2) + π4(n2 − n′2)2
]2

×
32π4(qyLy��

′)2
(
1 − (−1)�+�′ cos(qyLy)

)
[
(qyLy)

4 − 2π2(qyLy)
2(�2 + �′2) + π4(�2 − �′2)2

]2 . (7)

The current density vector of electrons along the z direction in the RQW has the form:

�jz(t) =
e�

m∗
∑

n,�,�pz

(
�pz − e

�c
�Az(t)

)
nn,�,�pz(t). (8)

The ACF of a weak EMW caused by the confined electrons in the presence of laser radiation
modulated by amplitude in the RQW takes the form [7]

α =
8π

c
√
χ∞E2

02

〈
�jz(t)�E02 sinωt

〉
t
. (9)

The general quantum equation for the statistical average value of the electron particle number
operator (or electron distribution function) nn,�,�pz

(t) = 〈a+
n,�,�pz

an,�,�pz
〉t [7]:

i�
∂nn,�,�pz

(t)
∂t

=
〈[
a+

n,�,�pz
an,�,�pz ,H

]〉
t
. (10)

Because the strong EMW (laser radiation) is modulated by amplitude, according to Section 2.1, it
is expressed by formula (2). According to the hypothesis, due to |ΔΩ| � Ω, then in a small amount of
time there are about a few periods T = 2π

Ω , we can presume that (ΔΩt+ Δα) is changeless. Therefore,
we let t get a certain specific value τ in such a small amount of time. Then, we have:

E01 =
√
F 2

1 + F 2
2 + 2F1F2 cos (ΔΩτ + Δα) = const; ϕ1 = α+ α′ = const. (11)

Using Equation (10) and the Hamiltonian in Equation (6) and Equation (11), we obtain the quantum
kinetic equation for electrons in the RQW (see Appendix A) [5, 6, 8]:

∂nn,�,�pz
(t)

∂t
= − 1

�2

∑
n′,�′,�q

∣∣C�q

∣∣2∣∣In,�,n′,�′(�q⊥)
∣∣2 +∞∑

u,s,m,f=−∞
Ju(a1zqz)Js(a1zqz)Jm(a2zqz)Jf (a2zqz)

× exp
{
i

{[
(s − u)

Ω1 + Ω2

2
+ (m− f)ω − iδ

]
t+ (s− u)

(
α1 + α2

2
+ α′

)}}

×
t∫

−∞
dt2
{[
nn,�,�pz

(t2)N�q − nn′,�′,�pz+�qz
(t2)(N�q + 1)

]

× exp
{
i

�

[
εn′,�′(�pz + �qz) − εn,�(�pz) − �ω�q − s�

Ω1 + Ω2

2
−m�ω + i�δ

]
(t− t2)

}
+
[
nn,�,�pz(t2)(N�q + 1) − nn′,�′,�pz+�qz(t2)N�q

]
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× exp
{
i

�

[
εn′,�′(�pz + �qz) − εn,�(�pz) + �ω�q − s�

Ω1 + Ω2

2
−m�ω + i�δ

]
(t− t2)

}
− [nn′,�′,�pz−�qz

(t2)N�q − nn,�,�pz
(t2)(N�q + 1)

]
× exp

{
i

�

[
εn,�(�pz) − εn′,�′(�pz − �qz) − �ω�q − s�

Ω1 + Ω2

2
−m�ω + i�δ

]
(t− t2)

}
− [nn′,�′,�pz−�qz(t2)(N�q + 1) − nn,�,�pz(t2)N�q

]
× exp

{
i

�

[
εn,�(�pz) − εn′,�′(�pz − �qz) + �ω�q − s�

Ω1 + Ω2

2
−m�ω + i�δ

]
(t− t2)

}}
, (12)

where a1z and a2z are the z-components of �a1 = 4e �E01

m∗(Ω1+Ω2)
2 and �a2 = e �E02

m∗Ω2
2
, respectively. N�q is the

balanced distribution function of phonons, α′ = arctan(F1−F2
F1+F2

tan(ΔΩ
2 τ + Δα

2 )) = const and Jk(x) is the
Bessel function.

In Equation (12), the quantum numbers n and � characterize the quantum wire. Similar equations
can be found in bulk semiconductors, quantum wells and cylindrical quantum wires [5, 8–10]. The first-
order tautology approximation method is used to solve this equation [7, 8]. The initial approximation
of nn,�,�pz(t) is chosen as

n0
n,�,�pz

(t2) = n̄n,�,�pz
, n0

n,�,�pz+�qz
(t2) = n̄n,�,�pz+�qz

, n0
n,�,�pz−�qz

(t2) = n̄n,�,�pz−�qz
.

The first-order tautology approximation method is implemented as follows: instead of the initial
approximation of nn,�,�pz(t) to the right hand side of the Equation (12), then integrating the
Equation (12), we will receive first-order approximation of nn,�,�pz

(t) and we stop here. Then, the
expression for the unbalanced electron distribution function nn,�,�pz(t) is received as follows:

nn,�,�pz
(t) = n̄n,�,�pz

− 1
�

∑
n′,�′,�q

∣∣C�q

∣∣2∣∣In,�,n′,�′(�q⊥)
∣∣2 +∞∑

k,s,r,m=−∞
Js(a1zqz)Jk+s(a1zqz)Jm(a2zqz)Jr+m(a2zqz)

×
exp

{
−i
{[
k
Ω1 + Ω2

2
+ rω + iδ

]
t+ k

(
α1 + α2

2
+ α′

)}}
kΩ1+Ω2

2 + rω + iδ

×

⎧⎪⎨
⎪⎩

n̄n′,�′,�pz−�qz
N�q − n̄n,�,�pz

(N�q + 1)

εn,�(�pz) − εn′,�′(�pz − �qz) − �ω�q − s�
Ω1 + Ω2

2
−m�ω + i�δ

+
n̄n′,�′,�pz−�qz

(N�q + 1) − n̄n,�,�pz
N�q

εn,�(�pz) − εn′,�′(�pz − �qz) + �ω�q − s�
Ω1 + Ω2

2
−m�ω + i�δ

− n̄n,�,�pz
N�q − n̄n′,�′,�pz+�qz

(N�q + 1)

εn′,�′(�pz + �qz) − εn,�(�pz) − �ω�q − s�
Ω1 + Ω2

2
−m�ω + i�δ

− n̄n,�,�pz(N�q + 1) − n̄n′,�′,�pz+�qzN�q

εn′,�′(�pz + �qz) − εn,�(�pz) + �ω�q − s�
Ω1 + Ω2

2
−m�ω + i�δ

⎫⎪⎬
⎪⎭ , (13)

where n̄n,�,�pz is the balanced distribution function of electrons, and the quantity δ is an infinitesimal
and appears due to the assumption of an adiabatic interaction of the EMW.

Substituting nn,�,�pz(t) into the expression for �jz(t), we calculate the ACF of the weak EMW by
using Equation (9). The resulting ACF of a weak EMW in the presence of laser radiation modulated
by amplitude in a RQW can be written as:

α =
e4n0ω0

2πε0c
√

2πχ∞m∗kBTm∗ω3Z1Z2

(
1
χ∞

− 1
χ0

)
cos2β2

+∞∑
n,�,n′,�′=1

An,�,n′,�′ × (B1 −B−1) (14)
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With:

B1 = Q0,1 − 1
2
F0,1 +

3
32
M0,1 +

1
4

(F−1,1 + F1,1) − 1
16

(M−1,1 +M1,1) +
1
64

(M−2,1 +M2,1)

Quantity B1 includes the contributions of the absorption processes of a photon of weak EMW; the
absorption processes and emission processes of none photon, a photon, two photons of strong EMW
modulated by amplitude.

B−1 = Q0,−1 − 1
2
F0,−1 +

3
32
M0,−1 +

1
4

(F−1,−1 + F1,−1) − 1
16

(M−1,−1 +M1,−1) +
1
64

(M−2,−1 +M2,−1)

Quantity B−1 includes the contributions of the emission processes of a photon of weak EMW; the
absorption processes and emission processes of none photon, a photon, two photons of strong EMW
modulated by amplitude.

In the above formulas:

Qs,m = e
− Rs,m

2kBT K0

( |Rs,m|
2kBT

)⎡⎢⎣e− �
2π2

2m∗kBT

(
n2

L2
x

+ �2

L2
y

)
(Nω0 + 1) − e

−
�
2π2

2m∗
(

n′2
L2

x
+ �′2

L2
y

)
−Rs,m

kBT Nω0

⎤
⎥⎦

Fs,m = a2
1cos

2β1e
− Rs,m

2kBT

(
4m∗2

R2
s,m

�4

) 1
2

K1

(|Rs,m|
2kBT

)
⎡
⎢⎣e− �

2π2

2m∗kBT

(
n2

L2
x

+ �2

L2
y

)
(Nω0 + 1) − e

−
�
2π2

2m∗
(

n′2
L2

x
+ �′2

L2
y

)
−Rs,m

kBT Nω0

⎤
⎥⎦

Ms,m = a4
1cos

4β1e
− Rs,m

2kBT

(
4m∗2

R2
s,m

�4

)
K2

( |Rs,m|
2kBT

)
⎡
⎢⎣e− �

2π2

2m∗kBT

(
n2

L2
x

+ �2

L2
y

)
(Nω0 + 1) − e

−
�
2π2

2m∗
(

n′2
L2

x
+ �′2

L2
y

)
−Rs,m

kBT Nω0

⎤
⎥⎦

In formulas for Qs,m, Fs,m, Ms,m, we obtain contribution of the Bose-Einstein distribution function for
optical phonons Nω0 = 1

e
�ω0
kBT −1

.

Rs,m = �
2π2

2m∗

(
n′2−n2

L2
x

+ �′2−�2

L2
y

)
+ �ω0 − s�Ω1+Ω2

2 −m�ω, with s = −2, −1, 0, 1, 2; m = −1, 1.
Quantity Rs,m includes contributions of the quantized energy in the restricted directions before

and after scattering, phonon energy, photon energy of three EMWs. a1 = 4e
√

F 2
1 +F 2

2 +2F1F2 cos(ΔΩτ+Δα)

m∗(Ω1+Ω2)
2 ;

An,�,n′,�′ = [C1(1 − δn,n′) + L1δn,n′ ][C2(1 − δ�,�′) + L2δ�,�′ ], where C1 = 1
Lx

[π3 + (n2+n′2)
2π(n2−n′2)

2 + 5(n2+n′2)

2πn2n′2 ],

C2 = 1
Ly

[π3 + (�2+�′2)

2π(�2−�′2)
2 + 5(�2+�′2)

2π�2�′2 ], L1 = 1
Lx

(3π
2 + 105

16πn2 ), L2 = 1
Ly

(3π
2 + 105

16π�2 ), Z1 =
+∞∑
n=1

e
− �

2π2n2

2m∗kBTL2
x ;

Z2 =
+∞∑
�=1

e
− �

2π2�2

2m∗kBTL2
y .

Quantities Z1, Z2 appear while we standardize balance distribution function of the electron. kB is
the Boltzmann constant, n0 is the electron density in RQW. β1 is the angle between the vector �E01 and
the positive direction of the Oz axis, β2 is the angle between the vector �E02 and the positive direction of
the Oz axis. �F1 and �F2 are the intensities of two laser radiations that create laser radiation modulated
by amplitude (with the intensity �E01 and the frequency Ω).

Equation (14) is the expression of ACF of a weak EMW in the presence of external laser radiation
modulated by amplitude in a RQW. From this expression, we see that ACF of a weak EMW is
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independent of E02; only dependent on F1, F2, Ω1, Ω2, ω, ΔΩ, T , Lx and Ly. This expression is
different from expressions in the published works for the normal bulk semiconductors, quantum wells
and cylindrical quantum wires [8–10]. When ΔΩ = 0, the above results will come back the case of
absorption of a weak EMW in the presence of non-modulated laser radiation. From expression (14),
when we set F1 = 0 and F2 = 0, we will receive expression of ACF of a weak EMW in the absence of
laser radiation in RQW. In Section 3, we will show clearly that under the influence of laser radiation
(non-modulated or modulated by amplitude), under proper conditions, ACF of a weak EMW can gets
negative values, i.e., the weak EMW can be increased; and in some conditions, when laser radiation is
modulated by amplitude, ability to increase a weak EMW can be enhanced in comparison with the use
of non-modulated laser radiation.

3. NUMERICAL RESULTS AND DISCUSSIONS

In this section, in order to show clearly that ACF of a weak EMW can gets negative values and in some
conditions, when laser radiation is modulated by amplitude, ability to increase a weak EMW can be
enhanced in comparison with the use of non-modulated laser radiation, we numerically calculated the
ACF for the specific case of a GaAs/GaAsAl RQW. The parameters used in the calculations are as
follows [13]: χ∞ = 10.9, χ0 = 13.1, m∗ = 0.066m0, m0 being the mass of free electron, n0 = 1023 m−3,
�ω0 = 36.25 meV, β1 = π

3 , β2 = π
6 , α1 = π

3 , α2 = π
6 .

Figure 1 describes the dependence of α on the temperature T , with Lx = 24 nm, Ly = 26 nm,
ω = 1013 Hz, F1 = 10.106 V/m, F2 = 15.106 V/m, Ω1 = 3.1013 Hz, Ω2 get five different values:
2.6 × 1013 Hz, 3 × 1013 Hz, 3.4 × 1013 Hz, 3.8 × 1013 Hz, 4 × 1013 Hz. The five different values of Ω2

corresponding to the five different values of ΔΩ: 0.4 × 1013 Hz, 0 Hz, −0.4 × 1013 Hz, −0.8 × 1013 Hz,
−1013 Hz. From the Figure 1, we see that there are the temperature regions at which the ACF of a weak
EMW in the presence of laser radiation modulated by amplitude is smaller than one in the presence
of non-modulated laser radiation and that there are the temperature regions at which the ACF of a
weak EMW in the presence of laser radiation modulated by amplitude gets values greater than one for
the case of non-modulated laser radiation. In addition, ACF can gets negative values, i.e., ACF of a
weak EMW becomes increased coefficient of a weak EMW. For example, when T > 108 K, the ACF
of a weak EMW gets negative values, and the ACF of a weak EMW in the presence of laser radiation
modulated by amplitude (with four cases of ΔΩ �= 0Hz) gets values greater than one for the case of
non-modulated laser radiation (ΔΩ = 0Hz). It means that ability to increase a weak EMW in the
presence of laser radiation modulated by amplitude is decreased in comparison with one for the case of
non-modulated laser radiation. When 94K < T < 108 K, the ACF of a weak EMW in the presence of
laser radiation modulated by amplitude (with ΔΩ = −0.4 × 1013 Hz) is more negative than one for the
case of non-modulated laser radiation (ΔΩ = 0 Hz), i.e., ability to increase a weak EMW is enhanced
when strong EMW is modulated by amplitude with ΔΩ = −0.4 × 1013 Hz.

Figure 2 describes the dependence of α on ΔΩ (|ΔΩ| is the modulated frequency), also with the
above conditions and seven different values of T . From the Figure 2, we see that the curves can have a
maximum or a minimum in the investigative interval.

Both Figures 1 and 2 show that at high temperature region, ACF is almost independent of ΔΩ,
i.e., the amplitude modulation of laser radiation hardly affects ability to increase a weak EMW in the
presence of laser radiation.

Figure 3 describes the dependence of α on the frequency Ω1 of either laser radiation with
Lx = 24 nm, Ly = 26 nm, T = 95 K, F1 = 10.106 V/m, F2 = 15.106 V/m, ω = 1013 Hz and
two different values of ΔΩ. The curves in this figure have a maximum and a minimum in the
investigative interval. This figure show that the ACF of a weak EMW can have negative values. When
Ω1 ∈ [3 × 1013, 3.4 × 1013

]
Hz, ACF of a weak EMW in the presence of strong EMW modulated by

amplitude (with ΔΩ = −0.4 × 1013 Hz) is more negative than one in the presence of non-modulated
strong EMW (ΔΩ = 0Hz), i.e., ability to increase a weak EMW is enhanced when strong EMW is
modulated by amplitude with ΔΩ = −0.4 × 1013 Hz.

Figure 4 describes the dependence of α on the frequency ω of the weak EMW, with Lx = 24 nm,
Ly = 26 nm, T = 30 K, F1 = 5.106 V/m, F2 = 11.106 V/m, Ω1 = 3.1013 Hz, and five different values
of Ω2 corresponding to the five different values of ΔΩ. From Figure 4, we see that the curves have a
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maximum (peak) at ω = ω0 and smaller maxima (peaks) at ω �= ω0. In this figure, we also see that the
ACF of a weak EMW can have negative values and that there are the frequency ω regions at which the
ACF of a weak EMW in the presence of laser radiation modulated by amplitude is smaller or greater
than one in the presence of non-modulated laser radiation.

Figure 5 describes the dependence of α on the intensity F1 of either laser radiation with Lx = 24 nm,
Ly = 26 nm, T = 95 K, F2 = 3.106 V/m, ω = 1013 Hz, Ω1 = 3.1013 Hz, and five different values of Ω2

corresponding to the five different values of ΔΩ. From Figure 5, we also see that when strong EMW is
modulated by amplitude, there are the F1 regions at which ability to increase a weak EMW is enhanced

Figure 1. The dependence of α on T . Figure 2. The dependence of α on ΔΩ.

Figure 3. The dependence of α on Ω1. Figure 4. The dependence of α on ω.

Figure 5. The dependence of α on F1. Figure 6. The dependence of α on Lx.
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and that there are the F1 regions at which ability to increase a weak EMW is decreased in comparison
with the case of non-modulated laser radiation.

Figure 6 describes the dependence of α on the Lx with Ly = 26 nm, T = 90 K, F1 = 7.106 V/m,
F2 = 11.106 V/m, ω = 7.1013 Hz, Ω1 = 3.1013 Hz, and five different values of Ω2 corresponding to the
five different values of ΔΩ. From this figure, we also see that the curves have many maxima (peaks).
Figure 6 also shows that the ACF of a weak EMW can have negative values and that in some conditions,
ability to increase a weak EMW can be decreased when strong EMW is modulated by amplitude. When
Lx ∈ [1, 16] nm or Lx ∈ [24, 100] nm, the ACF of a weak EMW in the presence of non-modulated strong
EMW gets negative values, i.e., the weak EMW is increased; but when strong EMW is modulated by
amplitude (with ΔΩ = −1013 Hz, −0.8×1013 Hz, 0.4×1013 Hz), the ACF of a weak EMW gets positive
values, i.e., the weak EMW is absorbed.

Summary, under influence of laser radiation (non-modulated or modulated by amplitude), ACF of
a weak EMW in a RQW can have negative values. Negative ACF of a weak EMW speaks ability to
increase a weak EMW. This is different from the similar problem in bulk semiconductors and from the
case of the absence of laser radiation. This effect has also appeared in quantum wells and cylindrical
quantum wires [9, 10]. In addition, if laser radiation is modulated by amplitude, in some conditions,
ability to increase a weak EMW can be enhanced.

4. CONCLUSIONS

In this research, we investigate negative absorption coefficient of a weak EMW caused by electrons
confined in RQWs in the presence of laser radiation modulated by amplitude. We obtain an analytical
expression of the ACF of a weak EMW in the presence of laser radiation modulated by amplitude in a
RQW for the case of electron-optical phonon scattering. The expression shows that the ACF of a weak
EMW is independent of E02 and is only dependent on F1, F2, Ω1, Ω2, ω, ΔΩ, T , Lx and Ly. From this
expression, we can receive the expression of the ACF of a weak EMW in the absence of laser radiation
in RQW by setting F1 = 0 and F2 = 0. The ACF is numerically calculated for the specific case of
GaAs/GaAsAl RQW. These results show that under the influence of laser radiation (non-modulated
or modulated by amplitude), the ACF of a weak EMW in a RQW can have negative values. Negative
ACF of a weak EMW speaks ability to increase a weak EMW in the presence of laser radiation. This
is different from a similar problem in bulk semiconductors and from the case without laser radiation. If
laser radiation is modulated by amplitude, in some conditions, the ACF can get more negative values
than one for the case of non-modulated laser radiation, i.e., ability to increase a weak EMW can be
enhanced in comparison with the case of non-modulated laser radiation. So, when we want to enhance
ability to increase a weak EMW, we need only to modulate amplitude of laser radiation and chose
proper conditions of system.
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APPENDIX A.

In this appendix, we write out some steps to obtain Equation (12) as follows.
Replacing Hamiltonian H into Equation (10), we will obtain the following equation:

∂nn,�,�pz(t)
∂t

= − 1
�2

∑
n′,�′,�q

C�qIn,�,n′,�′(�q⊥)

t∫
−∞

(H1 +H2 +H3 +H4) dt2 (A1)

where:

H1 =

⎡
⎣ ∑

n4,�4,�q1

C�q1
In′,�′,n4,�4(�q1⊥)

〈
a+

n4,�4,�pz+�qz+�q1z
an,�,�pz

(
b�q1

+ b+−�q1

)
b�q

〉
t2
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−
∑

n3,�3,�q1

C�q1
In,�,n3,�3(�q1⊥)

〈
a+

n′,�′,�pz+�qz
an3,�3,�pz−�q1z

b�q

(
b�q1

+ b+−�q1

)〉
t2

⎤
⎦

×e
i
�
[εn′,�′(�pz+�qz)−εn,�(�pz)−�ω�q](t−t2)− ie

m∗c

t∫
t2

�qz
�Az(t1)dt1

H2 = −
⎡
⎣ ∑

n4,�4,�q1

C∗
�q1
I∗n,�,n4,�4(�q1⊥)

〈
a+

n′,�′,�pz+�qz
an4,�4,�pz+�q1z

b+−�q

(
b+�q1

+ b−�q1

)〉
t2

−
∑

n3,�3,�q1

C∗
�q1
I∗n′,�′,n3,�3(�q1⊥)

〈
a+

n3,�3,�pz+�qz−�q1z
an,�,�pz

(
b+�q1

+ b−�q1

)
b+−�q

〉
t2

⎤
⎦

×e
− i

�
[εn,�(�pz)−εn′,�′ (�pz+�qz)−�ω�q](t−t2)− ie

m∗c

t∫
t2

�qz
�Az(t1)dt1

H3 = −
⎡
⎣ ∑

n4,�4,�q1

C�q1
In,�,n4,�4(�q1⊥)

〈
a+

n4,�4,�pz+�q1z
an′,�′,�pz−�qz

(
b�q1

+ b+−�q1

)
b�q

〉
t2

−
∑

n3,�3,�q1

C�q1
In′,�′,n3,�3(�q1⊥)

〈
a+

n,�,�pz
an3,�3,�pz−�qz−�q1z

b�q

(
b�q1

+ b+−�q1

)〉
t2

⎤
⎦

×e
i
�
[εn,�(�pz)−εn′,�′(�pz−�qz)−�ω�q](t−t2)− ie

m∗c

t∫
t2

�qz �Az(t1)dt1

H4 =

⎡
⎣ ∑

n4,�4,�q1

C∗
�q1
I∗n′,�′,n4,�4(�q1⊥)

〈
a+

n,�,�pz
an4,�4,�pz−�qz+�q1z

b+−�q

(
b+�q1

+ b−�q1

)〉
t2

−
∑

n3,�3,�q1

C∗
�q1
I∗n,�,n3,�3(�q1⊥)

〈
a+

n3,�3,�pz−�q1z
an′,�′,�pz−�qz

(
b+�q1

+ b−�q1

)
b+−�q

〉
t2

⎤
⎦

×e
− i

�
[εn′,�′ (�pz−�qz)−εn,�(�pz)−�ω�q](t−t2)− ie

m∗c

t∫
t2

�qz
�Az(t1)dt1

Equation (A1) is the quantum kinetic equation for electrons in the RQW. We will approximate this
equation to the second order of C�q. So, in the expression H1 we keep only term with �q1 = −�q, n4 = n,
�4 = �, n3 = n′, �3 = �′; in the expression H2 we keep only term with �q1 = �q, n4 = n′, �4 = �′, n3 = n,
�3 = �; in the expression H3 we keep only term with �q1 = −�q, n4 = n′, �4 = �′, n3 = n, �3 = �; in
the expression H4 we keep only term with �q1 = �q, n4 = n, �4 = �, n3 = n′, �3 = �′; and we make the
following approximation: 〈b+�q b�q〉t2 ≈ N�q, 〈b+−�qb−�q〉t2 ≈ N−�q = N�q, 〈b�qb+�q 〉t2 = 〈1 + b+�q b�q〉t2 ≈ 1 +N�q; and
ignore 〈b−�qb�q〉t2 , 〈b+−�qb

+
�q 〉t2 . Then, we will get Equation (A1) in the approximation to second order of

C�q.
The vector potential �A(t) of field of the three EMWs is found from the following equation:

−1
c

d �A(t)
dt = �E(t).
We replace �Az(t) = (0, 0, Az) into the approximate equation of nn,�,�pz(t) that has been just

found above, where Az is the z-component of �A(t). In addition, we use expansion: e±iz sinϕ =
+∞∑

m=−∞
Jm(z)e±imϕ. Then, we will obtain Equation (12), and it is the quantum kinetic equation for

electrons in the RQW in the approximation to second order of C�q.
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