login
Vol. 88
Latest Volume
All Volumes
PIERL 124 [2025] PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2019-11-30
Wideband Low-Profile Dual-Polarized Antenna with AMC Reflector
By
Progress In Electromagnetics Research Letters, Vol. 88, 15-20, 2020
Abstract
A wideband low-profile dual-polarized antenna based on the use of an artificial magnetic conductor (AMC) reflector is proposed. The AMC reflector consists of 9×9 square patches. In order to obtain wide impedance and gain bandwidths, the antenna consists of four printed dipoles: two dipoles are used as a radiator of horizontal polarization, and two dipoles are used as a radiator of vertical polarization. A simple excitation scheme without balun is used for dipoles feeding. A low profile of 0.068λL is realized (λL is the wavelength at the lowest operating frequency). Simulation and measurement results show that the proposed antenna has a 40% impedance bandwidth, a 40% 3-dB gain bandwidth, and a port isolation of less than -30 dB.
Citation
Alexander P. Volkov, Vitalii V. Kakshin, Igor Yu. Ryzhov, Kirill V. Kozlov, and Alexander Yu. Grinev, "Wideband Low-Profile Dual-Polarized Antenna with AMC Reflector," Progress In Electromagnetics Research Letters, Vol. 88, 15-20, 2020.
doi:10.2528/PIERL19100709
References

1. Alibakhshi-Kenari, M., B. S. Virdee, and E. Limiti, "Wideband planar array antenna based on SCRLH-TL for airborne synthetic aperture radar application," Journal of Electromagnetic Waves and Applications, Vol. 61, No. 2, 524-531, 2018.

2. Alibakhshi-Kenari, M., B. S. Virdee, C. H. See, R. Abd-Alhameed, A. Ali, F. Falcone, and E. Limiti, "Wideband printed monopole antenna for application in wireless communication systems," IET Microw. Antennas Propag., Vol. 61, No. 2, 524-531, 2018.

3. Cui, Y., X. N. Gao, H. Z. Fu, Q. X. Chu, and R. L. Li, "Broadband dual-polarized dual-dipole planar antennas: Analysis, design, and application for base stations," Antennas Propag. Mag., Vol. 59, No. 6, 77-87, 2017.
doi:10.1109/MAP.2017.2753038

4. Abegaonkar, M., L. Kurra, and S. K. Koul, Printed Resonant Periodic Structures and Their Applications, CRC Press, USA, Florida, Boca Raton, 2016.
doi:10.1201/9781315366807

5. Alibakhshi-Kenari, M., M. Naser-Moghadasi, R. A. Sadeghzadeh, B. S. Virdee, and E. Limiti, "Periodic array of complementary artificial magnetic conductor metamaterials-based multiband antennas for broadband wireless transceivers," IET Microw. Antennas Propag., Vol. 10, No. 15, 1682-1691, 2016.
doi:10.1049/iet-map.2016.0069

6. Alibakhshi-Kenari, M., M. Naser-Moghadasi, B. S. Virdee, A. Andujar, and J. Anguera, "Compact antenna based on a composite right/left handed transmission line," Microw. Opt. Technol. Lett., Vol. 57, No. 8, 1785-1788, 2015.
doi:10.1002/mop.29191

7. Yang, F. and Y. Rahmat-Samii, Electromagnetic Band Gap Structures in Antenna Engineering, Cambridge University Press, New York, USA, 2009.

8. Costa, F., O. Luukkonen, C. R. Simovski, A. Monorchio, S. A. Tretyakov, and P. M. de Maagt, "TE surface wave resonances on high-impedance surface based antenna: Analysis and modeling," IEEE Trans. Antennas Propag., Vol. 59, No. 10, 3588-3596, 2011.
doi:10.1109/TAP.2011.2163750

9. Li, X., Y.-C. Jiao, and L. Zhang, "Wideband low-profile CPW-fed slot-loop antenna using an artificial magnetic conductor," IET Electronics Letters, Vol. 54, No. 11, 673-674, 2018.
doi:10.1049/el.2018.0456

10. Azad, M. Z. and M. Ali, "Novel wideband directional dipole antenna on a mushroom like EBG structure," IEEE Trans. Antennas and Propag., Vol. 56, No. 2, 1242-1250, 2008.
doi:10.1109/TAP.2008.922673

11. Raad, H. R., A. I. Abbosh, H. M. Al-Rizzo, and D. G. Rucker, "Flexible and compact AMC based antenna for telemedicine applications," IEEE Trans. Antennas and Propag., Vol. 61, No. 2, 524-531, 2013.
doi:10.1109/TAP.2012.2223449

12. Li, G., H. Zhai, L. Li, C. Liang, R. Yu, and S. Liu, "AMC-loaded wideband base station antenna for indoor access point in MIMO system," IEEE Trans. Antennas and Propag., Vol. 63, No. 2, 525-533, 2015.
doi:10.1109/TAP.2014.2378316

13. Ren, J., B. Wang, and Y.-Z. Yin, "Low profile dual-polarized circular patch antenna with an AMC reflector," Progress In Electromagnetics Research Letters, Vol. 47, 131-137, 2014.
doi:10.2528/PIERL14062604

14. Zhai, H., L. Xi, L. X. Zang, and Z. N. Chen, "A low profile dual-polarized high isolation MIMO antenna arrays for wideband base station applications," IEEE Trans. Antennas and Propag., Vol. 66, No. 1, 191-202, 2018.
doi:10.1109/TAP.2017.2776346

15. Zhu, K., M. Su, C. Yu, and Y. Liu, "Compact high-isolation dual-polarized antenna with AMC reflector," Progress In Electromagnetics Research M, Vol. 73, 1-8, 2018.

16. Joshi, C., A. C. Lepage, J. Sarrazin, and X. Begaud, "Enhanced broadside gain of an ultra-wide band diamond dipole antenna using a hybrid reflector," IEEE Trans. Antennas and Propag., Vol. 64, No. 7, 3269-3274, 2016.
doi:10.1109/TAP.2016.2565695

17. Li, M., Q. L. Li, B. Wang, C. F. Zhou, and S. W. Cheung, "A low-profile dual-polarized dipole antenna using wideband AMC reflector," IEEE Trans. Antennas and Propag., Vol. 66, No. 5, 2610-2615, 2018.
doi:10.1109/TAP.2018.2806424

18. Volkov, A. P., K. V. Kozlov, A. P. Kurochkin, and A. Yu. Grinev, "Enhanced directivity of lowprofile wideband antenna based on artificial magnetic conductor," Radiation and Scattering of Electromagnetic Waves (RSEMW), 2179-2184, Divnomorskoe, Russia, June 2017.

19. Lin, F. H. and Z. N. Chen, "Truncated impedance-sheet model for low-profile broadband nonresonant- cell metasurface antennas using characteristic mode analysis," IEEE Trans. Antennas and Propag., Vol. 66, No. 10, 5043-5051, 2018.
doi:10.1109/TAP.2018.2854366