Progress In Electromagnetics Research Letters, Vol. 88, 15-20, 2020

Wideband Low-Profile Dual-Polarized Antenna with AMC Reflector
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Abstract—A wideband low-profile dual-polarized antenna based on the use of an artificial magnetic
conductor (AMC) reflector is proposed. The AMC reflector consists of 9 x 9 square patches. In order
to obtain wide impedance and gain bandwidths, the antenna consists of four printed dipoles: two
dipoles are used as a radiator of horizontal polarization, and two dipoles are used as a radiator of
vertical polarization. A simple excitation scheme without balun is used for dipoles feeding. A low
profile of 0.068)\y, is realized (A, is the wavelength at the lowest operating frequency). Simulation and
measurement results show that the proposed antenna has a 40% impedance bandwidth, a 40% 3-dB
gain bandwidth, and a port isolation of less than —30 dB.

1. INTRODUCTION

The rapid development of radio electronic devices, especially synthetic aperture radars (SARs) [1]
and wireless communication systems [2, 3], requires dual-polarized antennas with a low-profile, wide
bandwidth, and high port isolation. For instance, in an aviation SAR antenna profile lowering preserves
aircraft aerodynamics. In space SAR, it is important to have a low profile antenna for compact
arrangement inside a radome of the rocket launching into Earth’s orbit.

Periodic structures play an important role for an antenna characteristics improvement [4-6].
Artificial magnetic conductors (AMCs) are widely used for profile reduction of dipole antennas placed
parallel to a ground plane [7]. However, a radiation pattern of the antenna based on an AMC degrades
in a wide frequency band because of surface wave excitation in a finite AMC [8]. Different methods can
be use to decrease the aforementioned effect [9-19]. A reduction of AMC unit cell numbers prevents
surface wave excitation [9-11]. The single polarized antenna based on the AMC reflector consists of 8 x 6
units has the profile height of 0.033\;, and bandwidth of 36.78% was presented in [10]. An additional
gap between the AMC and the antenna can decrease coupling between them and enhance the antenna
radiation pattern [12-15]. The dual-polarized antenna with the AMC reflector height of 0.024\, the
distance between the AMC and the radiator of 0.04\; has bandwidth of 22.3% was designed in [14].
Hybrid reflectors, consisting of an AMC and metallic strips or walls, have been proposed to mitigate
this problem [16,17]. For instance, in [17] the dual-polarized antenna has the profile height of 0.098)\f,
and bandwidth of 54.8% was presented. Excitation schemes using two dipoles to improve the antenna
radiation pattern have been proposed in [18,19]. In [19] the single polarized antenna using a pair of
dipoles has the profile height of 0.087\z, and the bandwidth of 45% was proposed.

In this paper, a wideband, dual-polarized antenna with a low profile is presented for a synthetic
aperture radar of an unmanned aerial vehicle. The AMC reflection phase and dispersion diagram are
analysed. The prototype of the proposed antenna is constructed and measured. The key parameters of
the antenna is compared with the antennas, presented in state-of-the-art literature.
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2. ANTENNA DESIGN

2.1. Antenna Geometry

The 3D view of the antenna is depicted in Figure 1. The antenna consists of two dielectric layers. The

layers are separated by four plastics bolts.
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Figure 1. 3D view of the presented antenna.

The radiators (Figure 2(a)) and AMC (Figure 2(b)) topologies are etched on different sides of the
layer 1 (RO4350B, the thickness of Ay = 0.762mm). Four dipoles are used as radiating elements have
the following parameters: dl = 57.5 mm, dw; = 7.75 mm, dwy = 2.55 mm, dg = 5.5mm, T" = 62.5 mm,
L = 161.32mm. Each dipole is fed by a coaxial cable (SF-086). A balun was not used in the design
in order to simplify the antenna construction. However it could enhance a polarization purity of the
antenna. Coaxial cables are electrically isolated with the AMC patches. One of the dipole arms is
connected to an outer coaxial conductor and another dipole arm is connected to an inner coaxial
conductor. The AMC consists of 9 x 9 square patch elements with key parameters of: w = 17.1 mm,
D =17.98 mm, r = 2.2 mm. The topology of the antenna feeding network (Figure 2(c)) is etched on the
bottom side of the layer 2 (RO4350B, the thickness of hy = 1.524 mm). Another side of the layer 2 is
used as the antenna ground plane. 3-dB power dividers are used for dipole feeding. The key parameters
of the antenna feeding network are: fw = 3.35mm, fw; = 1.84mm, dl; = 22.2mm. The distance
between two substrates is H = 12.0 mm.
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Figure 2. Geometry of the antenna layers. (a) Top view of the layer, 1, (b) bottom view of the layer
1, (c) bottom view of the layer 2.

One of the important parameters of the presented antenna is the distance T between pairs of dipoles.
Figure 3 shows the simulated directivity versus frequency in the broadside direction for different 7. It
can be seen that the broadside directivity tends to have a dip while T is decreased.

2.2. AMC Design

An AMC reflector plays an important role for profile lowering and bandwidth widering of an antenna.
The geometry of the selected AMC unit is shown in Figure 4(a). The phase reflection was simulated
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Figure 3. Simulated antenna directivity in the broadside direction.
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Figure 4. AMC reflector design. (a) AMC unit, (b) reflection phase, (c) dispersion diagram.

using periodic boundary conditions. Figure 4(b) shows that the resonance frequency of the AMC is at
1.7 GHz. In order to obtain a wideband impedance bandwidth, surface wave can be exited into finite
AMC reflector [8,18,19]. The AMC reflector with 9 x 9 square patch elements was chosen to provide
it. Figure 4(c) shows the dispersion diagram of the AMC. The TM and TE modes were simulated. The
TE mode and the light line are very closely to each other because of the AMC air spacer. It crosses the
light line at 2.66 GHz. Surface wave resonances occur when the TE mode or TM curves intersect with
vertical lines representing the quantity pm/ND (N is a number of AMC unit cells, p = 1,2,...) [8]. It
can be seen that the first resonances occur when p = 3. The TM mode resonance is at 2.41 GHz, and
the TE mode resonance is at 2.68 GHz.

3. RESULTS

The antenna is constructed to approve the simulation results. The prototype is shown in Figure 5.
Finite elements method was used to simulate the performance of the antenna. Nelder Mead Simplex
Algorithm was used to optimize the antenna characteristics.

The antenna S-parameters are measured by the Agilent PNA-X network analyzer. The simulated
and measured |S11| and |Sa| are depicted in Figure 6(a). The impedance bandwidth is about 40% (1.6
2.4 GHz) for |S;;| < —10dB. Figure 6 (a) shown that the antenna has two resonances at 1.65 GHz and at
2.4 GHz. The first resonance associates with the dipoles resonance and the second resonance associates
with the AMC reflector resonance. The simulated and measured |S2;| is depicted in Figure 6(b). The
isolation is lower than —30dB from 1.6 to 2.4 GHz. The simulation results of S-parameters are well
matched with the experimental results.

The realized gains and radiation patterns of the antenna are measured by a planar near field method
into an anechoic chamber. The simulated and measured realized gains for ports 1 and 2 are depicted in
Figure 7(a). The simulated and measured realized gains are 9...11dBi and 9...12 dBi over the higher
band respectively. The deterioration of measured gains is mainly caused by the loss of coaxial cable and
the SMA connectors. Figure 7(b) shows the antenna efficiency. The simulated efficiencies are 89...97%
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Figure 5. Manufactured prototype of the antenna.
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Figure 6. Simulated and measured (a) |S11| and |Sa2|, (b) |S21] of the presented antenna.
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Figure 7. (a) Simulated and measured realized gain, (b) antenna efficiency.
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Figure 8. Simulated and measured normalized radiation patterns for port 1 at 2 GHz.

from 1.6 to 2.4 GHz for ports 1 and 2. The simulated and measured normalized radiation patterns for
ports 1 and 2 are depicted in Figure 8 and Figure 9 at 2 GHz respectively. The simulated and measured
the HPBWs are 49...65° and 43...56° in E-plane and H-plane of the antenna for ports 1 and 2. The

simulated F/B ratio is better of 11 dB for both antenna ports.
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Figure 9. Simulated and measured normalized radiation patterns for port 2 at 2 GHz.

Table 1 compares the key features of the proposed antenna and the antennas presented in state-
of-the-art literature [9-19]. In comparison with [9, 10,11, 16, 18, 19], the presented antenna operates at
two orthogonal polarizations. It has lesser profile height and comparable bandwidth than the antennas
presented in [12-15]. In comparison with [19], the proposed antenna has simpler feeding scheme without
a balun and an impedance matching network.

Table 1. Comparison of the proposed and previous antennas.

Design cases Profile height | Bandwidth Polarization

9] 0.05\ 1, 36.7% Linearly polarized
[10] 0.033\, 36.78% Linearly polarized
[11] 0.026\, 18% Linearly polarized
[12] 0.11Ap 33% Dual-polarized
[13] 0.11Mp 26.5% Dual-polarized
[14] 0.12Xr 54% Dual-polarized
[15] 0.064)\, 22.3% Dual-polarized
[16] 0.077\r 46% Linearly polarized
[17] 0.098\ 1, 54.8% Dual-polarized
[18] 0.075\ 40% Linearly polarized
[19] 0.087\, 45% Linearly polarized

[Proposed antenna] 0.068\ 40% Dual-polarized

4. CONCLUSION

A wideband low-profile dual-polarized antenna with an AMC reflector has been proposed. By using
the AMC reflector, the antenna obtains a low profile and wide bandwidth. By using two dipoles as
a radiator for horizontal or vertical polarizations, the antenna has a wide 3-dB gain bandwidth and
good port isolation. The simulated and measured results indicate that the antenna has a low profile of
0.068)\ 1, while an impedance bandwidth of 40% and 3-dB gain bandwidth of 40%. Port isolation, lower
than —30dB, is achieved. Compared with the known dual-polarized antennas using an AMC reflector,
the proposed antenna has a lower profile with a comparable impedance bandwidth. The antenna was
designed for a synthetic aperture radar of an unmanned aerial vehicle.
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