submit Submit login
Vol. 59
Latest Volume
All Volumes
PIERL 124 [2025] PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2016-04-13
Mutual Coupling Reduction Between Closely Placed Microstrip Patch Antenna Using Meander Line Resonator
By
Progress In Electromagnetics Research Letters, Vol. 59, 115-122, 2016
Abstract
An approach of reducing Mutual Coupling between two patch antennas is proposed in this paper. Here, a meander line resonator is placed in between the radiating elements. By inserting the meander line resonator between the patch antennas with the edge-to-edge distance less than λ/18, about 8 dB reduction of Mutual Coupling throughout the 10-dB bandwidth has been achieved without degrading the radiation pattern.The circuit model of the proposed configuration is carried out in this paper and envelope correlation coefficient is also computed. The proposed structure has been fabricated and measured.
Citation
Jeet Ghosh, Sandip Ghosal, Debasis Mitra, and Sekhar Ranjan Bhadra Chaudhuri, "Mutual Coupling Reduction Between Closely Placed Microstrip Patch Antenna Using Meander Line Resonator," Progress In Electromagnetics Research Letters, Vol. 59, 115-122, 2016.
doi:10.2528/PIERL16012202
References

1. Balanis, C., Antenna Theory: Analysis and Design, Wiley Inter science, 2005.

2. Van Lil, E. H. and A. R. Van de Capelle, "Transmission-line model for mutual coupling between microstrip antennas," IEEE Transaction on Antennas Propagation, Vol. 32, No. 8, 816-821, 1984.
doi:10.1109/TAP.1984.1143416

3. Malkomes, K., "Mutual coupling between microstrip patch antennas," Electronic Letters, Vol. 18, No. 12, 520-522, 1982.
doi:10.1049/el:19820353

4. Penard, E. and J. P. Daniel, "Mutual coupling between microstrip antennas," Electronics Letters, Vol. 18, No. 14, 605-607, 1982.
doi:10.1049/el:19820415

5. Yu, A. and X. Zhang, "A novel method to improve the performance of microstrip antenna arrays using a dumbbell EBG structure," IEEE Antennas Wireless Propagation Letters, Vol. 2, No. 1, 170-172, 2003.
doi:10.1109/LAWP.2003.814773

6. Suntives, A. and R. Abhari, "Miniaturization and isolation improvement of a multiple-patch antenna system using electromagnetic band gap structures," Microwave and Optical Technology Letters, Vol. 55, No. 7, 1609-1612, 2013.
doi:10.1002/mop.27621

7. Farahani, H. S., M. Veysi, M. Kamyab, and A. Tadjalli, "Mutual coupling reduction in patch antenna arrays using a UC-EBG superstate," IEEE Antennas Wireless Propagation Letters, Vol. 9, 57-59, 2010.
doi:10.1109/LAWP.2010.2042565

8. Islam, M. T. and M. S. Alam, "Compact EBG structure for alleviating mutual coupling between patch antenna array elements," Progress In Electromagnetics Research, Vol. 137, 425-438, 2013.
doi:10.2528/PIER12121205

9. Zhu, F. G., J. D. Xu, and Q. Xu, "Reduction of mutual coupling between closely packed antenna lements using defected ground structure," Electronics Letters, Vol. 45, No. 12, 601-602, 2012.
doi:10.1049/el.2009.0985

10. Farsi, S., D. Schreurs, and B. Nauwelaers, "Mutual coupling reduction of planar antenna by using a simple microstrip u-section," IEEE Antennas and Wireless Propagation Letters, Vol. 11, 1501-1503, 2012.
doi:10.1109/LAWP.2012.2232274

11. Alsath, M. G., M. Kanagasabai, and B. Balasubramanian, "Implementation of slotted meander line resonators for isolation enhancement in microstrip patch antenna arrays," IEEE Antennas and Wireless Propagation Letters, Vol. 12, 15-18, 2013.
doi:10.1109/LAWP.2012.2237156

12. Ghosh, C. K. and S. K. Parui, "Reduction of mutual coupling between E-shaped microstrip antennas by using a simple microstrip I-section," Microwave and Optical Technology Letters, Vol. 55, No. 11, 2544-2549, 2013.
doi:10.1002/mop.27928

13. OuYang, J., F. Yang, and Z. M. Wang, "Reduction of mutual coupling of closely spaced microstrip MIMO antennas for WLAN application," IEEE Antennas Wireless Propagation Letters, Vol. 10, 310-312, 2011.
doi:10.1109/LAWP.2011.2140310

14. Suwailam, M. M. B., O. F. Siddiqui, and O. M. Ramahi, "Mutual coupling reduction between microstrip patch antennas using slotted-complementary split-ring resonators," IEEE Antennas Wireless Propagation Letters, Vol. 9, 876-878, 2010.
doi:10.1109/LAWP.2010.2074175

15. Shafique, M. F., Z. Qamar, L. Riaz, R. Saleem, and S. A. Khan, "Coupling suppression in densely packed microstrip arrays using metamaterial structure," Microwave and Optical Technology Letters, Vol. 57, No. 3, 759-763, 2015.
doi:10.1002/mop.28943

16. Zuo, S. L., Y. Z. Yin, W. J. Wu, Z. Y. Zhang, and J. Ma, "Investigations of reduction of mutual coupling between two planar monopoles using λ/4 slots," Progress in Electromagnetic Research Letters, Vol. 19, 9-18, 2010.
doi:10.2528/PIERL10100609

17. Yang, X. M., X. G. Liu, X. Y. Zhu, and T. J. Cui, "Reduction of mutual coupling between closely packed patch antenna using waveguide metamaterials," IEEE Antennas and Wireless Propagation Letters, Vol. 11, 389-391, 2012.
doi:10.1109/LAWP.2012.2193111

18. Xu, H. X., G. M. Wang, and M. Q. Qi, "Hilbert-shaped magnetic waveguided metamaterials for electromagnetic coupling reduction of microstrip antenna array," IEEE Transactions on Magnetics, Vol. 49, No. 4, 1526-1529, 2013.
doi:10.1109/TMAG.2012.2230272

19. Qamar, Z. and H. C. Park, "Compact waveguided metamaterials for suppression of mutual coupling in microstrip array," Progress In Electromagnetic Research, Vol. 149, 183-192, 2014.
doi:10.2528/PIER14063002

20. Sarkar, D., A. Singh, K. Saurav, and K. V. Srivastava, "Four-element quad-band multiple-input-multiple-output antenna employing split-ring resonator and inter-digital capacitor," IET Microwaves Antennas & Propagation, Vol. 9, No. 13, 1453-1460, 2015.
doi:10.1049/iet-map.2015.0189

21. HFSS ver. 14, Ansoft Corporation, , Pittsburgh.

22. Ansoft Designer ver. 2.2.0, Ansoft Corporation, .