submit Submit login
Vol. 85
Latest Volume
All Volumes
PIERB 110 [2025] PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2019-07-12
Non-Iterative Eigenfunction-Based Inversion (NIEI) Algorithm for 2D Helmholtz Equation
By
Progress In Electromagnetics Research B, Vol. 85, 1-25, 2019
Abstract
A non-iterative inverse-source solver is introduced for the 2D Helmholtz boundary value problem (BVP). Microwave imaging within a chamber having electrically conducting walls is formulated as a time-harmonic 2D electromagnetic field problem that can be modelled by such a BVP. The novel inverse-source solver, which solves for contrast sources, is the first step in a two-stage process that recovers the complex permittivity of an object of interest in the second step. The unknown contrast sources, as well as the (permittivity) contrast, are represented using the eigenfunction basis associated with the chamber's shape; canonical shapes allowing for analytically defined eigenfunctions. This whole-domain eigenfunction basis allows the imposition of constraints on the contrast-source expansion at virtual spatial points or contours outside the imaging domain. These constraints effectively regularize the inverse-source problem and the result is a well-conditioned matrix equation for the contrast-source coefficients that is solved in a least-squares sense. The contrast-source coefficients corresponding to different illuminating fields are then utilized to recover the contrast expansion coefficients using one more well-conditioned matrix inversion. The performance of this algorithm is studied using a series of synthetic test problems. The results of this study are promising as they compare very well with, and at times out-perform, state-of-the-art inversion algorithms (both in terms of reconstruction quality and computation time).
Citation
Nasim Abdollahi, Ian Jeffrey, and Joe LoVetri, "Non-Iterative Eigenfunction-Based Inversion (NIEI) Algorithm for 2D Helmholtz Equation," Progress In Electromagnetics Research B, Vol. 85, 1-25, 2019.
doi:10.2528/PIERB19032607
References

1. Benedetti, M., M. Donelli, A. Martini, M. Pastorino, A. Rosani, and A. Massa, "An innovative microwave imaging technique for nondestructive evaluation: Applications to civil structures monitoring and biological bodies inspection," IEEE Transactions on Instrumentation and Measurement, Vol. 55, No. 6, 1878-1884, 2006.
doi:10.1109/TIM.2006.884287

2. Yemelyanov, K. M., N. Engheta, A. Hoorfar, and J. A. McVay, "Adaptive polarization contrast techniques for through-wall microwave imaging applications," IEEE Transactions on Geoscience and Remote Sensing, Vol. 47, No. 5, 1362-1374, 2009.
doi:10.1109/TGRS.2009.2015569

3. Woodhouse, I. H., Introduction to Microwave Remote Sensing, CRC Press, 2017.
doi:10.1201/9781315272573

4. Wagner, W., G. Bloschl, P. Pampaloni, J.-C. Calvet, B. Bizzarri, J.-P. Wigneron, and Y. Kerr, "Operational readiness of microwave remote sensing of soil moisture for hydrologic applications," Nordic Hydrology, Vol. 38, No. 1, 1-20, 2007.
doi:10.2166/nh.2007.029

5. Chandra, R., H. Zhou, I. Balasingham, and R. M. Narayanan, "On the opportunities and challenges in microwave medical sensing and imaging," IEEE Transactions on Biomedical Engineering, Vol. 62, No. 7, 1667-1682, 2015.
doi:10.1109/TBME.2015.2432137

6. Fear, E. C., X. Li, S. C. Hagness, and M. A. Stuchly, "Confocal microwave imaging for breast cancer detection: Localization of tumors in three dimensions," IEEE Transactions on Biomedical Engineering, Vol. 49, No. 8, 812-822, 2002.
doi:10.1109/TBME.2002.800759

7. Beada'a, J. M., A. M. Abbosh, S. Mustafa, and D. Ireland, "Microwave system for head imaging," IEEE Transactions on Instrumentation and Measurement, Vol. 63, No. 1, 117, 2014.
doi:10.1109/TIM.2013.2277562

8. Mojabi, P. and J. LoVetri, "Eigenfunction contrast source inversion for circular metallic enclosures," Inverse Problems, Vol. 26, No. 2, 025010, 2010.
doi:10.1088/0266-5611/26/2/025010

9. Gilmore, C. and J. LoVetri, "Enhancement of microwave tomography through the use of electrically conducting enclosures," Inverse Problems, Vol. 24, No. 3, 035008, 2008.
doi:10.1088/0266-5611/24/3/035008

10. Nemez, K., A. Baran, M. Asefi, and J. LoVetri, "Modeling error and calibration techniques for a faceted metallic chamber formagnetic field microwave imaging," IEEE Transactions on Microwave Theory and Techniques, Vol. 65, No. 11, 4347-4356, 2017.
doi:10.1109/TMTT.2017.2694823

11. Pastorino, M., "Microwave Imaging," John Wiley & Sons, Vol. 208, 2010.

12. Chen, X., Computational Methods for Electromagnetic Inverse Scattering, Wiley Online Library, 2018.
doi:10.1002/9781119311997

13. De Zaeytijd, J., A. Franchois, C. Eyraud, and J.-M. Geffrin, "Full-wave three-dimensional microwave imaging with a regularized Gauss-Newton method --- Theory and experiment," IEEE Transactions on Antennas and Propagation, Vol. 55, No. 11, 3279-3292, 2007.
doi:10.1109/TAP.2007.908824

14. Souvorov, A. E., A. E. Bulyshev, S. Y. Semenov, R. H. Svenson, A. G. Nazarov, Y. E. Sizov, and G. P. Tatsis, "Microwave tomography: A two-dimensional newton iterative scheme," IEEE Transactions on Microwave Theory and Techniques, Vol. 46, No. 11, 1654-1659, 1998.
doi:10.1109/22.734548

15. Rubæk, T., P. M. Meaney, P. Meincke, and K. D. Paulsen, "Nonlinear microwave imaging for breast-cancer screening using Gauss-Newton's method and the CGLS inversion algorithm," IEEE Transactions on Antennas and Propagation, Vol. 55, No. 8, 2320-2331, 2007.
doi:10.1109/TAP.2007.901993

16. Harada, H., D. J. Wall, T. Takenaka, and M. Tanaka, "Conjugate gradient method applied to inverse scattering problem," IEEE Transactions on Antennas and Propagation, Vol. 43, No. 8, 784-792, 1995.
doi:10.1109/8.402197

17. Franchois, A. and A. Tijhuis, "A quasi-Newton reconstruction algorithm for a complex microwave imaging scanner environment," Radio Science, Vol. 38, No. 2, 1-12, 2003.
doi:10.1029/2001RS002590

18. Kleinman, R. and P. van den Berg, "A modified gradient method for two-dimensional problems in tomography," Journal of Computational and Applied Mathematics, Vol. 42, No. 1, 17-35, 1992.
doi:10.1016/0377-0427(92)90160-Y

19. Caorsi, S., A. Massa, M. Pastorino, and A. Rosani, "Microwave medical imaging: Potentialities and limitations of a stochastic optimization technique," IEEE Transactions on Microwave Theory and Techniques, Vol. 52, No. 8, 1909-1916, 2004.
doi:10.1109/TMTT.2004.832016

20. Colton, D. and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory, Vol. 93, Springer Science & Business Media, 2012.

21. Tikhonov, A. N., "Solution of incorrectly formulated problems and the regularization method," Soviet Math. Dokl., Vol. 4, 1035-1038, 1963.

22. Hansen, P. C., "The truncated SVD as a method for regularization," BIT Numerical Mathematics, Vol. 27, No. 4, 534-553, 1987.
doi:10.1007/BF01937276

23. Xu, P., "Truncated SVD methods for discrete linear ill-posed problems," Geophysical Journal International, Vol. 135, No. 2, 505-514, 1998.
doi:10.1046/j.1365-246X.1998.00652.x

24. Hansen, P. C., "Regularization, GSVD and truncated GSVD," BIT Numerical Mathematics, Vol. 29, No. 3, 491-504, 1989.
doi:10.1007/BF02219234

25. Hansen, P. C., T. Sekii, and H. Shibahashi, "The modified truncated SVD method for regularization in general form," SIAM Journal on Scientific and Statistical Computing, Vol. 13, No. 5, 1142-1150, 1992.
doi:10.1137/0913066

26. Hansen, P. C., "Analysis of discrete ill-posed problems by means of the L-curve," SIAM Review, Vol. 34, No. 4, 561-580, 1992.
doi:10.1137/1034115

27. Hansen, P. C. and D. P. O'Leary, "The use of the L-curve in the regularization of discrete ill-posed problems," SIAM Journal on Scientific Computing, Vol. 14, No. 6, 1487-1503, 1993.
doi:10.1137/0914086

28. Mojabi, P. and J. LoVetri, "Overview and classification of some regularization techniques for the Gauss-Newton inversion method applied to inverse scattering problems," IEEE Transactions on Antennas and Propagation, Vol. 57, No. 9, 2658-2665, 2009.
doi:10.1109/TAP.2009.2027161

29. Scapaticci, R., I. Catapano, and L. Crocco, "Wavelet-based adaptive multiresolution inversion for quantitative microwave imaging of breast tissues," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 8, 3717-3726, 2012.
doi:10.1109/TAP.2012.2201083

30. Scapaticci, R., P. Kosmas, and L. Crocco, "Wavelet-based regularization for robust microwave imaging in medical applications," IEEE Transactions on Biomedical Engineering, Vol. 62, No. 4, 1195-1202, 2015.
doi:10.1109/TBME.2014.2381270

31. Winters, D. W., J. D. Shea, P. Kosmas, B. D. van Veen, and S. C. Hagness, "Three-dimensional microwave breast imaging: Dispersive dielectric properties estimation using patient-specific basis functions," IEEE Transactions on Medical Imaging, Vol. 28, No. 7, 969-981, 2009.
doi:10.1109/TMI.2008.2008959

32. Grote, M. J., M. Kray, and U. Nahum, "Adaptive eigenspace method for inverse scattering problems in the frequency domain," Inverse Problems, Vol. 33, No. 2, 025006, 2017.
doi:10.1088/1361-6420/aa5250

33. Gilmore, C., P. Mojabi, A. Zakaria, S. Pistorius, and J. LoVetri, "On super-resolution with an experimental microwave tomography system," IEEE Antennas and Wireless Propagation Letters, Vol. 9, 393-396, 2010.
doi:10.1109/LAWP.2010.2049471

34. Asefi, M., G. Faucher, and J. LoVetri, "Surface-current measurements as data for electromagnetic imaging within metallic enclosures," IEEE Transactions on Microwave Theory and Techniques, Vol. 64, No. 11, 4039-4047, 2016.
doi:10.1109/TMTT.2016.2605665

35. Jeffrey, I., A. Zakaria, and J. LoVetri, "Microwave imaging by mixed-order discontinuous Galerkin contrast source inversion," 2014 XXXIth URSI General Assembly and Scientific Symposium (URSI GASS), 1-4, IEEE, 2014.

36. Jeffrey, I., N. Geddert, K. Brown, and J. LoVetri, "The time-harmonic discontinuous Galerkin method as a robust forward solver for microwave imaging applications," Progress In Electromagnetics Research, Vol. 154, 1-21, 2015.
doi:10.2528/PIER15090403

37. Den Dekker, A. and A. van den Bos, "Resolution: A survey," JOSA A, Vol. 14, No. 3, 547-557, 1997.
doi:10.1364/JOSAA.14.000547

38. Born, M., E. Wolf, A. B. Bhatia, et al. Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, Vol. 7, Cambridge University Press, 1999.
doi:10.1017/CBO9781139644181

39. Zakaria, A., C. Gilmore, and J. LoVetri, "Finite-element contrast source inversion method for microwave imaging," Inverse Problems, Vol. 26, No. 11, 115010, 2010.
doi:10.1088/0266-5611/26/11/115010

40. Abdollahi, N., I. Jeffrey, and J. LoVetri, "A non-iterative eigenfunction-based 3D inverse solver for microwave imaging," Second URSI Atlantic Radio Science Meeting Science General Assembly (URSI-ATRASC), 2018.