Vol. 36
Latest Volume
All Volumes
PIERB 110 [2025] PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2011-11-10
Simple Implementation of Arbitrarily Shaped Total-Field/Scattered-Field Regions in Finite-Difference Frequency-Domain
By
Progress In Electromagnetics Research B, Vol. 36, 221-248, 2012
Abstract
The total-field/scattered-field (TF/SF) formulation is a popular technique for incorporating sources into electromagnetic models like the finite-difference frequency-domain (FDFD) method. It is versatile and simplifies calculation of waves scattered from a device. In the context of FDFD, the TF/SF formulation involves modifying all of the finite-difference equations that contain field terms from both the TF and SF regions in order to make the terms compatible. While simple in concept, modifying all of the equations for arbitrarily shaped TF/SF regions is tedious and no solution has been offered in the literature to do it in a straightforward manner. This paper presents a simple and efficient technique for implementing the TF/SF formulation that allows the TF/SF regions to be any shape and of arbitrary complexity. Its simplicity and versatility are demonstrated by giving several practical examples including a diffraction grating, a waveguide problem, and a scattering problem with a cylindrical wave source.
Citation
Raymond C. Rumpf, "Simple Implementation of Arbitrarily Shaped Total-Field/Scattered-Field Regions in Finite-Difference Frequency-Domain," Progress In Electromagnetics Research B, Vol. 36, 221-248, 2012.
doi:10.2528/PIERB11092006
References

1. Sun, , W., K. Liu, and C. A. Balanis, "Analysis of singly and doubly periodic absorbers by frequency-domain finite-difference method," IEEE Trans. on Antennas and Propagation, Vol. 44, No. 6, 798-805, 1996.
doi:10.1109/8.509883

2. Wu, , S.-D. and E. N. Glytsis, "Volume holographic grating couplers: rigorous analysis by use of the finite-difference frequency-domain method," Applied Optics, Vol. 43, No. 4, 1009-1023, 2004.
doi:10.1364/AO.43.001009

3. Luo, , G. Q., W. Hong, Z.-C. Hao, B. Liu, W. D. Li, and , "Theory and experiment of novel frequency selective surface based on substrate integrated waveguide technology ," IEEE Trans. on Antennas and Propagation, Vol. 53, No. 12, 4035-4043, 2005.
doi:10.1109/TAP.2005.860010

4. Rumpf, , R. C., Design and optimization of nano-optical elements by coupling fabrication to optical behavior, 60-84 University of Central Florida, 2006.

5. Merewether, , D. E., R. Risher, and F. W. Smith, "On implementing a numeric Huygen's source sheme in a finite di®erence program to illuminate scattering bodies," IEEE Trans. on Nuclear Science, Vol. 27, 1829-1833, 1980.
doi:10.1109/TNS.1980.4331114

6. Umashankar, , K. R. and A. Taflove, "A novel method to analyze electromagnetic scattering of complex objects," IEEE Trans. on Electroman. Compat., Vol. 24, 397-405, 1982.
doi:10.1109/TEMC.1982.304054

7. Taffove, , A., S. Hagness, and , Computational Electrodynamics: The Finite-di®erence Time-domain Method,, 3rd Ed., 186-220, Artech House, , 2005.

8. Sacks, , Z. S., D. M. Kinsland, R. Lee, and J.-F. Lee, "A perfectly matched anisotropic absorber for use as an absorbing boundary condition," IEEE Trans. on Antennas and Propagation, Vol. 43, No. 12, 1460-1463, 1995.
doi:10.1109/8.477075

9. Marengo, , E. A., C. M. Rappaport, and E. L. Miller, "Optimum PML ABC conductivity pro¯le in FDFD," IEEE Trans. On Magnetics, Vol. 35, No. 3, 1506-1509, 1999.
doi:10.1109/20.767253

10. Arft, , C. M., A. Knoesen, and , "Alternatives to the perfectly matched layer for waveguide simulation using the FDFD method," Electromagnetics, Vol. 25, No. 3, 177-186, 2005.
doi:10.1080/02726340590915566

11. Berenger, , J.-P., Perfectly Matched Layer (PML) for Computational Electromagnetics,, Morgan & Claypool, 2007.

12. Balanis, , C. A, Advanced Engineering Electromagnetics, 1-31, Wiley, , 1989..

13. Yee, K. S., " Numerical solution of initial boundary value problems involving Maxwell'S equations in isotropic media," IEEE Trans. on Antennas and Propagation, Vol. 14, No. 3, 302-307, 1966.
doi:10.1109/TAP.1966.1138693

14. Taflove, , A., S. Hagness, and , Computational Electrodynamics: The Finite-difference Time-domain Method, 3rd Ed., 58-84, Artech House, , 2005.

15. Rumpf, , R. C., , "Design and optimization of nano-optical elements by coupling fabrication to optical behavior," University of Central Florida, , 72-74, 2006..

16. Yinchao, , C., K. Sun, B. Beker, and R. Mittra, "Unified matrix presentation of Maxwell's and wave equations using generalized di®erential matrix operators," IEEE Trans. on Education, Vol. 41, No. 1, 61-69, 1998.
doi:10.1109/13.660791

17. Zhu, , Z. and T. G. Brown, "Full-vectorial finite-difference analysis of microstructured optical fibers," Optics Express, Vol. 10, No. 7, 853-864, 2002.

18. Guo, , S., F. Wu, and S. Albin, "Photonic band gap analysis using finite-difference frequency-domain method," Optics Express, Vol. 12, No. 8, 1741-1746, 2004.
doi:10.1364/OPEX.12.001741

19. Sharkawy, , M. H., V. Demir, and A. Z. Elsherbeni, "Plane wave scattering from three dimensional multiple objects using the iterative multiregion technique based on the FDFD method," IEEE Trans. on Antennas and Propagation, Vol. 54, No. 2, 666-673, 2006.
doi:10.1109/TAP.2005.863129

20. Wu, , S.-D. and E. N. Glytsis, "Finite-number-of-periods holo-graphic gratings with finite-width incident beams: Analysis using the finite-difference frequency-domain method," J. Opt. Soc. Am. A, Vol. 19, No. 10, 2018-2029, 2002.
doi:10.1364/JOSAA.19.002018

21. Rumpf, , R. C., A. Tal, and S. M. Kuebler, "Rigorous electromagnetic analysis of volumetrically complex media using the slice absorption method," J. Opt. Soc. Am. A, Vol. 24, No. 10, 3123-3134, 2007.
doi:10.1364/JOSAA.24.003123

22. Tal, , A., Y.-S. Chen, H. E. Williams, R. C. Rumpf, and S. M. Kuebler, "Fabrication and characterization of three-dimensional copper metallodielectric photonic crystals," Optics Express, Vol. 15, No. 26, 18283-18293, 2007.
doi:10.1364/OE.15.018283

23. Jin, J., J.-M. Jin, and , The Finite Element Method in Electromagnetics, 2nd Ed., Vol. 1, Wiley, , 2002.

24. Helfert, S. F., R. Pregla, and , "The method of lines: A versatile tool for the analysis of waveguide structures," Electromagnetics, Vol. 22, 615-637, 2002..
doi:10.1080/02726340290084166

25. Jamid, , H. A. and M. N. Akram, "Analysis of deep waveguide gratings: An e±cient cascading and doubling algorithm in the method of lines framework ," J. Lightwave Technol., Vol. 20, No. 7, 1204-1209, 2002.
doi:10.1109/JLT.2002.800350

26. Lee, , S. M., , "Finite-difference vectorial-beam-propagation method using Yee's discretization scheme for modal fields," J. Opt. Soc. Am. A,, Vol. 13, No. 7, 1369{133-1337, 1996.
doi:10.1364/JOSAA.13.001369

27. Cherif, , R., M. Zghal, R. Chatta, and C. B. Neila, "Full vector beam propagation method modeling of dual core photonic crystal fibre couplers," Proc. SPIE,, Vol. 6182, 2006.

28. Fallahkhair, A. B., K. S. Li, and T. E. Murphy, , "Vector finite di®erence modesolver for anisotropic dielectric waveguides," J. Lightwave Technol.,, Vol. 26, No. 11, 1423-1431, 2008.
doi:10.1109/JLT.2008.923643

29. Berenger, , J.-P., "Evanescent waves in PML's: Origin of the numerical reflection in wave-structure interaction problems," IEEE Trans. on Antennas and Propagation,, Vol. 47, No. 10, 1497-1503, 1999.
doi:10.1109/8.805891

30. Ashcroft, N. W and N. D. Mermin, Solid State Physics, Holt, Rinehart, and Winston, , 1976..

31. Moharam, M. G., E. B. Grann, D. A. Pommet, and T. K. Gaylord, "Formulation for stable and effcient implementation of the rigorous coupled-wave analysis of binary grating," J. Opt. Soc. Am. A, Vol. 12, No. 5, 1068-1076, 1995.
doi:10.1364/JOSAA.12.001068

32. Moharam, , M. G., D. A. Pommet, E. B. Grann, and T. K. Gaylord, "Stable implementation of the rigorous coupled-wave analysis for surface-relief gratings: Enhanced transmittance matrix approach," J. Opt. Soc. Am. A, , Vol. 12, No. 5, 1077-1086, 1995 .
doi:10.1364/JOSAA.12.001077

33. Rumpf, , R. C., , Design and optimization of nano-optical elements by coupling fabrication to optical behavior, 125-152, Ph.D. Dissertation, University of Central Florida, , 2006.