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Abstract—The total-field/scattered-field (TF/SF) formulation is a
popular technique for incorporating sources into electromagnetic
models like the finite-difference frequency-domain (FDFD) method. It
is versatile and simplifies calculation of waves scattered from a device.
In the context of FDFD, the TF/SF formulation involves modifying
all of the finite-difference equations that contain field terms from
both the TF and SF regions in order to make the terms compatible.
While simple in concept, modifying all of the equations for arbitrarily
shaped TF/SF regions is tedious and no solution has been offered
in the literature to do it in a straightforward manner. This paper
presents a simple and efficient technique for implementing the TF/SF
formulation that allows the TF/SF regions to be any shape and of
arbitrary complexity. Its simplicity and versatility are demonstrated
by giving several practical examples including a diffraction grating, a
waveguide problem, and a scattering problem with a cylindrical wave
source.

1. INTRODUCTION

The finite-difference frequency-domain (FDFD) method may be the
easiest of all rigorous numerical techniques to implement [1–4]. It is
a fully numerical method that is excellent for field visualization and
modeling structures with complex geometries or devices of finite size. It
is accurate, stable, and the sources of error are well understood. Being
a frequency-domain method, it is able to resolve sharp resonances
and obtain solutions at a single frequency more efficiently than time-
domain methods. It is able to account for oblique angle of incidence
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and incorporate material dispersion more easily than time-domain
methods. The method works by transforming Maxwell’s equations into
a set of linear algebraic equations using the finite-difference method.
This large set of equations is written in matrix form as Ax=0 where
A is the wave matrix and x is the field to be calculated. This equation
has only a trivial solution so it cannot be solved without incorporating
a source vector b to put the matrix equation in the form of Ax=b.
Given this second matrix equation, the field is calculated by solving
x=A−1b.

Calculating the source vector b is not an intuitive or obvious
process, particularly for those new to numerical modeling. A simple
and powerful equation is derived in this paper to calculate the source
vector using the total-field/scattered-field (TF/SF) technique [5–7].
Without this equation, TF/SF can be a cumbersome and confusing
technique to implement. In the TF/SF framework, the grid is divided
into two regions; the total-field (TF) and the scattered-field (SF)
regions. The TF region is the physically real region and contains both
the source and the waves scattered from a device. The SF region is a
non-physical mathematically constructed region that contains only the
scattered waves and not the source. The TF/SF formulation can be
used to minimize energy incident of absorbing boundary conditions as
well as to automatically separate the source from the scattered-field.
This second feature makes calculation of quantities like transmittance
and reflectance easier during post-processing.

This paper is organized as follows. First, the standard formulation
of the FDFD method is presented in order to calculate a wave matrix
A. Second, the derivation is presented of the equation used to calculate
the source vector b based on the TF/SF technique. Third, the
general implementation of the FDFD method using this equation is
presented. Finally, several practical examples are given before the
paper is concluded.

2. FORMULATION OF THE STANDARD
FINITE-DIFFERENCE FREQUENCY-DOMAIN
METHOD

The grid schemes for two typical FDFD problems are illustrated in
Figure 1. At left is a 2D grid to model scattering from a finite device.
It is surrounded by a perfectly matched layer (PML) on all four sides
to absorb outgoing waves in all directions [8–11]. The TF/SF method
is used to inject a source and to minimize energy incident on the
absorbing boundaries by removing the source in those regions. Near
the boundary of the PML, the dashed line highlights the interface
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Figure 1. (a) FDFD grid scheme to model scattering from a finite
device. (b) FDFD grid scheme to model transmission and reflection
from a periodic structure.

between the TF and SF regions. The waves scattered from the device
are free to pass through the TF/SF interface and into the SF region
where they are recorded and then absorbed by the PML. When post-
processing the scattered fields, it is not necessary to separate the source
from the scattered waves because this is handled automatically by the
TF/SF framework. Figure 1(b) shows the typical grid scheme used to
model scattering from periodic structures like metamaterials, gratings,
and frequency selective surfaces. Here, a PML is only used at the top
and bottom parts of the grid because periodic boundary conditions are
used on the left and right boundaries of the grid. In this configuration,
the SF region resides solely at the top of the grid and the TF/SF
formulation can be thought of as a way of injecting a “one-way source”
toward the device from above. No power is launched in the backward
direction away from the device.

2.1. Maxwell’s Equations with a Perfectly Matched Layer

Formulation of the FDFD method begins with Maxwell’s curl
equations [12]. After normalizing the magnetic field according to
~̃H = −jη0

~H, Maxwell’s curl equations with a uniaxial PML (UPML)
can be written as

∇× ~E = k0[µr][s]
~̃H (1)

∇× ~̃H = k0[εr][s] ~E (2)
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For a UPML, the tensor [s] is expressed as

[s] =




sysz

sx
0 0

0 sxsz
sy

0
0 0 sxsy

sz


 (3)

One effective way to calculate the PML terms in Eq. (3) is

sx(x) = sx0(x)
[
1− jη0σ

′
x(x)

]
sx0(x) = 1 + smax ·

(
x

Lx

)p

σ′x(x) = σ′max sin2

(
πx

2Lx

)
(4)

sy (y) = sy0 (y)
[
1− jη0σ

′
y (y)

]
sy0 (x) = 1 + smax ·

(
y

Ly

)p

σ′y (y) = σ′max sin2

(
πy

2Ly

)
(5)

sz (z) = sz0 (z)
[
1− jη0σ

′
z (z)

]
sz0 (z) = 1 + smax ·

(
z

Lz

)p

σ′z (z) = σ′max sin2

(
πz

2Lz

)
(6)

Typical values for the various parameters above are 1 ≤ p < 5,
0 ≤ smax ≤ 5, and σ′max = 1. The prime superscript on the σ′
terms indicates that these are purely fictitious conductivity terms
separate from the physical conductivity that is usually accounted for in
a complex dielectric constant. The typical number of cells for a PML
ranges between 10 and 40. The parameters Lx, Ly, and Lz are the
physical lengths of the PML so that the ratios x/Lx, y/Ly and z/Lz

increase from zero to one moving through the PML from the center of
the grid. When the tensor quantities [µr] and [εr] are restricted to be
diagonal, Eqs. (1) and (2) can be expanded into the following set of
six coupled partial differential equations.

∂Ez

∂y′
− ∂Ey

∂z′
= µxx

sysz

sx
H̃x (7)

∂Ex

∂z′
− ∂Ez

∂x′
= µyy

sxsz

sy
H̃y (8)

∂Ey

∂x′
− ∂Ex

∂y′
= µzz

sxsy

sz
H̃z (9)

∂H̃z

∂y′
− ∂H̃y

∂z′
= εxx

sysz

sx
Ex (10)
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∂H̃x

∂z′
− ∂H̃x

∂x′
= εyy

sxsz

sy
Ey (11)

∂H̃y

∂x′
− ∂H̃x

∂y′
= εzz

sxsy

sz
Ez (12)

Here, the grid coordinates have been normalized according to

x′ = k0x y′ = k0y z′ = k0z (13)

2.2. Finite-Difference Approximation of Maxwell’s
Equations

The derivatives in Maxwell’s equations can be approximated using
central finite-differences where the fields and materials are assigned
to discrete points on a Yee grid [13, 14]. This arrangement staggers
the field components within each cell of the grid so that all of the
electric field components are encircled by magnetic field components
and all of the magnetic field components are encircled by electric field
components. The Yee cells for 1D, 2D, and 3D grids are illustrated
in Figure 2. This staggered arrangement provides an efficient means
to approximate the curl operations by finite-differences. In addition,
the physical boundary conditions are naturally satisfied and Maxwell’s
divergence equations are implicitly satisfied so spurious solutions are
avoided [14].

Figure 2. The Yee grid scheme for 1D, 2D, and 3D formulations.

After approximating the derivatives in Maxwell’s equations with
central finite-differences on a Yee grid, Eqs. (7)–(12) become

E
(i− 1

2
,j+ 3

2
,k+1)

z −E
(i− 1

2
,j+ 1

2
,k+1)

z

∆y′
−E

(i− 1
2
,j+1,k+ 3

2)
y −E

(i− 1
2
,j+1,k+ 1

2)
y

∆z′

= µ
(i− 1

2
,j+1,k+1)

xx
s
(i− 1

2
,j+1,k+1)

y s
(i− 1

2
,j+1,k+1)

z

s
(i− 1

2
,j+1,k+1)

x

H̃
(i− 1

2
,j+1,k+1)

x (14)
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E
(i,j+ 1

2
,k+ 3

2)
x − E
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2
,k+ 1

2)
x

∆z′
− E

(i+ 1
2
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,k+1)

z −E
(i− 1
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,k+1)

z
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x s
(i,j+ 1

2
,k+1)

z
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,k+1)
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,k+ 1

2)
x

∆y′
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x s
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H̃
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2)
z − H̃
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2)

z

∆y′
− H̃

(i,j+ 1
2
,k+1)

y − H̃
(i,j+ 1

2
,k)

y

∆z′

= ε
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2
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2
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x (17)
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x −H̃
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,j+1,k)

x

∆z′
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2)
z
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= ε
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x s
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2
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z

s
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2
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y
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(i− 1

2
,j+1,k+ 1

2)
y (18)

H̃
(i,j+1

2
,k+1)
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(i−1,j+1

2
,k+1)

y

∆x′
−H̃

(i−1
2
,j+1,k+1)
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(i−1

2
,j,k+1)

x

∆y′

= ε
(i− 1

2
,j+ 1

2
,k+1)

zz
s
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2
,j+ 1

2
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x s
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2
,j+ 1

2
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y

s
(i− 1

2
,j+ 1

2
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E
(i− 1

2
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2
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Each of these equations is written once for every cell in the grid so
each finite-difference equation produces a large set of linear algebraic
equations that can be written in matrix form as

De
y′ez −De

z′ey = µxx h̃x (20)

De
z′ex −De

x′ez = µyy h̃y (21)

De
x′ey −De

y′ex = µzz h̃z (22)

Dh
y′h̃z −Dh

z′h̃y = εxxex (23)

Dh
z′h̃x −Dh

x′h̃z = εyyey (24)
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Dh
x′h̃y −Dh

y′h̃x = εzzez (25)

The terms ex, ey, ez, h̃x, h̃y and h̃z are column vectors that contain
all of the field components throughout the entire grid reshaped into
linear arrays.

ex =




E
( 1

2
,0,0)

x

E
( 3

2
,0,0)

x
...

E
(Nx− 1

2
,Ny−1,Nz−1)

x




ey =




E
(0, 1

2
,0)

y

E
(1, 1

2
,0)

y
...

E
(Nx−1,Ny− 1

2
,Nz−1)

y




ez =




E
(0,0, 1

2)
z

E
(1,0, 1

2)
z

...

E
(Nx−1,Ny−1,Nz− 1

2)
z




(26)

h̃x =




H̃
(0, 1

2
, 1
2)

x

H̃
(1, 1

2
, 1
2)

x
...

H̃
(Nx−1,Ny− 1

2
,Nz− 1

2)
x




h̃y =




H̃
( 1

2
,0, 1

2)
y

H̃
( 3

2
,0, 1

2)
y

...

H̃
(Nx− 1

2
,Ny−1,Nz− 1

2)
y




h̃z =




H̃
( 1

2
, 1
2
,0)

z

H̃
( 3

2
, 1
2
,0)

z
...

H̃
(Nx− 1

2
,Ny− 1

2
,Nz−1)

z




(27)

The terms De
x′ , De

y′ and De
z′ are banded matrices that calculate first-

order spatial derivatives of the electric fields across the grid [15–18]. As
a quick example of what these matrices look like, they were computed
for a two-dimensional grid composed of only 4×4 cells. Using Dirichlet
boundary conditions, the matrix derivative operators De

x′ and De
y′ for
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this simple case are

De
x′ =

1
k0 ·∆x




−1 1
−1 1
−1 1
−1 0
−1 1
−1 1
−1 1
−1 0
−1 1
−1 1
−1 1
−1 0
−1 1
−1 1
−1 1
−1




(28)

De
y′ =

1
k0 ·∆y




−1 1
−1 1
−1 1
−1 1
−1 1
−1 1
−1 1
−1 1
−1 1
−1 1
−1 1
−1 1
−1
−1
−1
−1




(29)

For second-order accurate finite-differences, the derivative operators
for FDFD are composed of two dominant diagonals. Some off diagonal
terms can arise when periodic boundaries or other boundary conditions
are incorporated. Similarly, the terms Dh

x′ , D
h
y′ and Dh

z′ calculate first-
order spatial derivatives of the magnetic fields across the grid. The
derivative operators for the electric and magnetic fields are different
due to the staggered nature of the Yee grid, but they are related
through

Dh
x′ = − (De

x′)
H Dh

y′ = − (
De

y′
)H Dh

z′ = − (De
z′)

H (30)
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In Eq. (30), the “H” superscript indicates a Hermitian transpose
operation. Finally, the terms µxx , µyy , µzz , εxx , εyy , and εzz are
diagonal matrices containing the relative permittivity throughout the
grid. These perform point-by-point multiplication operations on the
field terms. In addition, the PML terms have been absorbed into
these quantities giving them the following general form where diag[]
is a procedure that reshapes a multidimensional function into a linear
array and places that array along the diagonal of a sparse matrix.
µxx =diag

[
µxxs−1

x sysz

]
µyy=diag

[
µyysxs−1

y sz

]
µzz=diag

[
µzzsxsys

−1
z

]
(31)

εxx =diag
[
εxxs−1

x sysz

]
εyy=diag

[
εyysxs−1

y sz

]
εzz=diag

[
εzzsxsys

−1
z

]
(32)

2.3. Three-Dimensional Matrix Wave Equation

Equations (20)–(22) and Eqs. (23)–(25) can be written in block matrix
form as


0 −De

z′ De
y′

De
z′ 0 −De

x′−De
y′ De

x′ 0




[ex

ey

ez

]
=




µxx 0 0
0 µyy 0
0 0 µzz






h̃x

h̃y

h̃z


 (33)




0 −Dh
z′ Dh

y′

Dh
z′ 0 −Dh

x′
−Dh

y′ Dh
x′ 0






h̃x

h̃y

h̃z


 =

[
εxx 0 0
0 εyy 0
0 0 εzz

][ex

ey

ez

]
(34)

A matrix wave equation for the electric field can be derived by solving
Eq. (33) for the magnetic fields and substituting that expression into
Eq. (34). The result is






0 −Dh
z′ Dh

y′

Dh
z′ 0 −Dh

x′
−Dh

y′ Dh
x′ 0





µ−1

xx 0 0
0 µ−1

yy 0
0 0 µ−1

zz






0 −De
z′ De

y′
De

z′ 0 −De
x′−De

y′ De
x′ 0


−

[
εxx 0 0
0 εyy 0
0 0 εzz

]


[ ex

ey

ez

]
=

[ 0
0
0

]
(35)

Similarly, a matrix wave equation for the magnetic field can be
derived by solving Eq. (34) for the electric fields and substituting that
expression into Eq. (33). The result is






0 −De
z′ De

y′
De

z′ 0 −De
x′−De

y′ De
x′ 0





ε−1
xx 0 0
0 ε−1

yy 0
0 0 ε−1

zz






0 −Dh
z′ Dh

y′

Dh
z′ 0 −Dh

x′
−Dh

y′ Dh
x′ 0


−



µxx 0 0
0 µyy 0
0 0 µzz










h̃x

h̃y

h̃z


 =

[ 0
0
0

]
(36)
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In most cases, the matrices produced by 3D FDFD are
prohibitively large to be solved on a standard computer by direct means
like LU decomposition. In these cases, iterative algorithms [19, 20]
or alternate techniques like the slice absorption method [21, 22] are
recommended.

2.4. Two-Dimensional Matrix Wave Equations

Many devices can be modeled in two dimensions and this is always
good practice when it can be done. This happens when devices are
uniform in one direction and no wave propagation exists in the uniform
direction. If the uniform direction is the z-axis, then De

z′ = Dh
z′ = 0

and Eqs. (20)–(25) reduce to

De
y′ez = µxx h̃x (37)

−De
x′ez = µyy h̃y (38)

De
x′ey −De

y′ex = µzz h̃z (39)

Dh
y′h̃z = εxxex (40)

−Dh
x′h̃z = εyyey (41)

Dh
x′h̃y −Dh

y′h̃x = εzzez (42)

After inspecting these equations, it can be seen that Maxwell’s
equations have decoupled into two distinct modes. The “E-mode,” or
TM polarization, is described by Eqs. (37), (38), and (42). To derive
a matrix wave equation for the E-mode, Eqs. (37) and (38) are solved
for the magnetic field quantities and these are substituted in Eq. (42).
The results are

h̃x = µ−1
xx De

y′ez (43)

h̃y = −ε−1
yy De

x′ez (44)(
Dh

x′µ
−1
yy De

x′ + Dh
y′µ

−1
xx De

y′ + εzz

)
ez = 0 (45)

If desired, the magnetic fields h̃x and h̃y can be calculated from ez using
Eqs. (43) and (44). Similarly, the “H-mode,” or TE polarization, is
described by Eqs. (39), (40), and (41). A matrix wave equation for the
H-mode is derived by first solving Eqs. (40) and (41) for the electric
field quantities and then substituting these expressions into Eq. (39).
The results are

ex = ε−1
xx Dh

y′h̃z (46)

ey = −ε−1
yy Dh

x′h̃z (47)
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(
De

x′ε
−1
yy Dh

x′ + De
y′ε

−1
xx Dh

y′ + µzz

)
h̃z = 0 (48)

If desired, the electric field quantities ex and ey can be computed from
h̃z using Eqs. (46) and (47). Both Eqs. (45) and (48) have the form
Ax = 0.

2.5. Summary of Formulations

All of the derivations presented in this section are summarized in
Table 1. The column vector x contains the electric or magnetic fields
that have yet to be calculated. They are the unknown quantities. The
matrix A is called the wave matrix. It enforces Maxwell’s equations
on the fields in x and contains all the information about the materials,
grid, and boundary conditions. All of the matrix wave equations
derived above have the general form Ax=0. This equation has only a
trivial solution so it cannot be solved without incorporating a source
b to put the matrix equation into the form of Ax=b. The next
section formulates a simple, but powerful equation that can be used to
calculate this source term.

Table 1. Summary of FDFD wave matrix formulations, Ax = 0.

3D Full Wave Formulations

Ae =




0 −Dh
z′ Dh

y′

Dh
z′ 0 −Dh

x′

−Dh
y′ Dh

x′ 0






µ−1

xx 0 0

0 µ−1
yy 0

0 0 µ−1
zz







0 −De
z′ De

y′

De
z′ 0 −De

x′

−De
y′ De

x′ 0




−




εxx 0 0

0 εyy 0

0 0 εzz




Ah =




0 −De
z′ De

y′

De
z′ 0 −De

x′

−De
y′ De

x′ 0






ε−1
xx 0 0

0 ε−1
yy 0

0 0 ε−1
zz







0 −Dh
z′ Dh

y′

Dh
z′ 0 −Dh

x′

−Dh
y′ Dh

x′ 0




−



µxx 0 0

0 µyy 0

0 0 µzz




xe =



ex

ey

ez




xh =



h̃x

h̃y

h̃z




2D Formulations

Ae = Dh
x′µ

−1
yy De

x′ + Dh
y′µ

−1
xx De

y′ + εzz

Ah = De
x′ε

−1
yy Dh

x′ + De
y′ε

−1
xx Dh

y′ + µzz

xe = ez

xh = h̃z

1D Formulations

Ax = Dh
z′µ

−1
yy De

z′ + εxx

Ay = Dh
z′µ

−1
xx De

z′ + εyy

xx = ex

xy = ey
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3. TOTAL-FIELD/SCATTERED-FIELD FORMULATION

In this section, the TF/SF formulation is applied to derive a single
equation from which b can be calculated quite easily. This formulation
requires all cells in the grid to be defined as either SF or TF
quantities. They can be chosen arbitrarily, but usually they are chosen
for convenience in post-processing and to limit energy incident on
absorbing boundary conditions.

In general, two rules must be followed to successfully implement
the TF/SF technique. First, the source field must be a rigorous
solution to Maxwell’s equations. Plane waves, cylindrical waves, and
spherical waves are straightforward. Illuminating devices with beams
or exciting waveguides with specific modes involve more work. Second,
the source must be completely described with no ambiguity so the
TF/SF interface must be a closed contour. In practice, this usually
means the TF/SF interface completely surrounds the generator or cuts
completely through the grid.

The finite-difference equations written for cells lying at the TF/SF
interface contain both TF and SF quantities. These terms, however,
are not directly compatible. For this reason, all of the finite-difference
equations containing both TF and SF quantities must be corrected.
The source must be added to SF quantities appearing in TF equations
and subtracted from TF quantities appearing in SF equations. When
this done, the correction terms are constants and can be brought to the
right hand side of the matrix equation to put it in the form of Ax=b.
The term b is a column vector describing the source and is essentially
an array containing the correction terms from all the finite-difference
equations throughout the grid.

To begin deriving a simple equation to calculate b, it is first
necessary to compute the source field fsrc (x, y) and a masking function
Q (x, y) throughout the entire grid. The source field fsrc (x, y) is
calculated in the absence of the device being modeled so it should
look continuous and uninterrupted everywhere. This function is then
reshaped into a column vector and called f src. It has the following
general form.

fsrc =




f
(1,1)
src

f
(2,1)
src
...

f
(Nx,Ny)
src




(49)

The masking function Q (x, y) has 1’s at each point on the grid
that corresponds to positions in the scattered-field and 0’s at each
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point that corresponds to the total-field. It is then reshaped into a
linear array and placed along the diagonal of a sparse matrix Q. All
other elements in Q are set to zero so it is a very sparse matrix. It
has the following general form where the 1’s and 0’s have been placed
arbitrarily for illustration.

Q = diag [Q (x, y)] =




1
1

1
0

0
. . .

1




(50)

Using the Q matrix and the identity matrix I, the source field can be
isolated to either the SF or TF regions as follows.

fSF = Qf src (51)
fTF = (I−Q) fsrc (52)

Some finite-difference equations written in the SF regions contain
TF terms. These TF terms are not compatible with SF quantities so
the source must be subtracted from them to make them look like SF
quantities. The quantities that must be subtracted are in the column
vector AfTF, but these should only be subtracted from SF equations.
The Q matrix can be used to mask the correction terms to just
SF equations as QAfTF. Similarly, some finite-difference equations
written in the TF region contain SF terms. These SF terms are not
compatible with TF quantities so the source must be added to them to
make them look like TF quantities. The quantities that must be added
are in the column vector AfSF, but these should only be added to TF
equations. Again, the Q matrix can be used to mask the correction
term to just TF equations as (I-Q)AfSF. The overall equation to make
all the necessary corrections to the original matrix equation Ax=0 is
then

Ax− QAfTF︸ ︷︷ ︸
SF corrections

+(I−Q)AfSF︸ ︷︷ ︸
TFcorrections

= 0 (53)

The correction terms are known quantities so they can be brought
to the right hand side of Eq. (53) to put the matrix equation in the
form of Ax=b where

b = QAfTF − (I−Q)AfSF (54)

A more useful expression for b can be obtained that is only a
function of A, Q, and f src by substituting Eqs. (51) and (52) into
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Eq. (54) and simplifying. The result is

b = (QA−AQ) fsrc (55)

To use this equation, it is important to remember that f src contains
the source throughout the entire grid without the device being present.
The only other information needed is the masking matrix Q and
the wave matrix A. It is worth noting that Eq. (55) can be derived
independent of the underlying numerical method that converted
Maxwell’s equations to matrix form with the same result. For this
reason, it is the author’s assumption that the method should be
equally applicable to other numerical techniques like the finite element
method [23].

4. IMPLEMENTATION OF FDFD

This section summarizes how to implement the FDFD method and
how to incorporate a TF/SF source using Eq. (55). A simple example
is presented here just to illustrate the method. Propagation through
just free space will be modeled on a grid composed of 60 × 60 cells.
Examples of more advanced models are provided in the next section.

Step 1 — Build the device on a Yee grid

The process of building a device onto a Yee grid is depicted in
Figure 3. For illustration purposes, a device was included in this

Figure 3. Constructing a device on a grid for FDFD.
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figure, but only free space will be modeled here. The process begins
by assigning material properties to each point in the grid. Separate
functions are needed for µxx (x, y), µyy (x, y), µzz (x, y), εxx (x, y),
εyy (x, y), and εzz (x, y) because these all exist at staggered physical
locations in the grid and so they can be different even for isotropic
materials. These terms will differ where a material boundary passes
through the middle of a cell thereby placing the staggered quantities
in different materials despite being associated with the same cell. If
performed correctly, visualizing the data in any of these arrays would
show the device being modeled.

Next, the PML is incorporated and diagonal matrices are formed
according to Eqs. (31) and (32). Here, a PML with 20 cells at the
top and bottom boundaries was incorporated with parameters set to
smax=3, σ′max = 1 and p = 3. For 2D simulations, no PML at the
z-axis boundaries was needed so sz was set to 1 everywhere. The
square matrices µxx , µyy , µzz , εxx , εyy , and εzz perform point-by-point
multiplications on the fields consistent with Maxwell’s Equations.

Step 2 — Calculate the wave matrix A

Before the wave matrix A can be calculated, the derivative
operators De

x′ , De
y′ , De

z′ , Dh
x′ , Dh

y′ and Dh
z′ must be constructed. It

is useful to create a separate function that constructs these matrices
because it will make the FDFD code cleaner and the same function
can also be used in other numerical methods that use finite-differences
like the method of lines [24, 25], beam propagation method [26, 27],
and more [18, 21, 28]. Given the derivative operators and the diagonal
materials matrices, the wave matrix A is calculated using an equation
from Table 1.

Step 3 — Calculate the source vector b

The first step for incorporating a source is to calculate the source
field fsrc (x, y) throughout the entire grid as if the device was not
present. In this manner, the source field should not appear scattered.
The source can be a plane wave, a cylindrical wave, a modal source,
multiple sources, or virtually anything else. The source field for a plane
wave incident at angle θ is calculated according to Eq. (56) and the
real part is plotted in Figure 4(left) for θ = 30◦.

fsrc (x, y) = exp [−jk0n (x sin θ + y cos θ)] (56)

A column vector containing the source is then constructed by reshaping
the source function fsrc (x, y) into a linear array according to Eq. (49).

The next step is to construct the masking matrix Q. A
straightforward approach is to first build a masking function Q (x, y)
that is the same size and shape as the materials grid. Second, assign 1’s
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Figure 4. Visualization of the data used to calculate the source vector
b.

to every position desired to be a SF quantity and 0’s at every position
desired to be a TF quantity. An example is provided in Figure 4(center)
where a smiley face was included for fun and to illustrate the versatility
of Eq. (55). In practice, the entire center of the grid is usually made the
TF. The Q matrix is constructed by reshaping the masking function
Q (x, y) into a linear array and placing it along the diagonal of a sparse
matrix according to Eq. (50).

Now, all the parameters needed have been defined to calculate
the source vector b using Eq. (55). To investigate the data calculated
in the source vector b for this example, it was reshaped into a 2D
array and the real part visualized in Figure 4(right). It is easy to
see that data only exists in this array for points on the grid that lie
next to the TF/SF boundary where the correction terms are needed.
Incorporating all of these corrections manually or by other means is
difficult, particularly for oddly shaped TF/SF regions, but it is very
easy and straightforward using Eq. (55).

Step 4 — Calculate the field x

After the three steps above have been completed, the matrix
equation Ax=b can be solved for x to calculate the fields.

x = A−1b (57)

For most problems, this can be solved directly by LU
decomposition or in MATLAB using backward division. For 3D
problems, the column vector x is composed of three column vectors
representing the three field components. These must be parsed from
x before proceeding. The fields can then be reshaped from column
vectors to 2D or 3D arrays so that they can be visualized or post-
processed in a more straightforward manner.

The real part of the field x resulting from this simple example is
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Figure 5. Real part of the field as calculated from the data shown in
Figure 4.

plotted in Figure 5. Since the grid had no devices present, there were
no scattered waves so all the fields in the grid defined to be in the SF
region were zero. Waves are clearly present in all of the cells defined
to contain TF quantities.

Step 5 — Post-process the data

It is not feasible to outline all the possible ways of post processing
the field to calculate meaningful quantities. A common calculation is
the overall reflectance and transmittance from a periodic device and
this will be outlined here for 2D simulations. This starts by extracting
the field in a “reflection record plane” and a “transmission record
plane.” The reflection record plane is located at the top of the grid
inside the scattered-field, but outside of the PML. The transmission
record plane is located at the bottom of the grid just above the
bottom PML. The materials in the record planes are typically kept
homogeneous to make power calculations in those layers easier. Spacer
regions were added between the device and the PML because most
PML formulations do a poor job attenuating evanescent fields [29].
The spacer regions allow the evanescent field to sufficiently decay before
entering the PML. This overall grid scheme is illustrated in Figure 6.

One approach to calculate overall reflectance and transmittance
is to integrate the z component of the Poynting vector across
the reflection and transmission record planes. While simple and
straightforward to implement, this calculation does not lend itself to
calculating power in each of the diffracted modes that may exist.
The approach outlined below computes the overall reflectance and
transmittance by first calculating the fraction of power in each
diffracted mode and then adding these together to arrive at the overall
reflectance and transmittance.

First, the fields are extracted from the grid at the reflection and
transmission record planes. At the same time, the phase tilt φ (x) due
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Figure 6. Typical grid scheme for periodic structures.

to an oblique angle of incidence is removed to isolate the amplitude part
of the field described by Bloch’s theorem [30] in periodic structures.

φ(x) = exp(−jkx,incx) (58)
Aref(x) = Ez(x, yref)÷ φ(x) (59)
Atrn(x) = Ez(x, ytrn)÷ φ(x) (60)

Next, the amplitudes of the diffracted waves are calculated by
Fourier transforming the field from above. The diffraction order is
given by the integer m.

Sref(m) = FFT[Aref(x)] (61)
Strn(m) = FFT[Atrn(x)] (62)

The transverse wave vector components associated with each of the
diffracted orders are calculated according to

kx,m = kinc
x − 2πm

Λx
(63)

These terms remain the same throughout the entire grid regardless
of the materials. The terms that do vary through the grid are
the longitudinal components of the wave vectors associated with the
diffraction orders. These can be computed from the dispersion relation,
but the only time these are needed is when the transmittance and
reflectance is being calculated. For this reason, they only need to be
calculated in the transmission and reflection record planes according
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to

kref
z,m =

√
k2

0µr,refεr,ref − k2
x,m (64)

ktrn
z,m =

√
k2

0µr,trnεr,trn − k2
x,m (65)

Finally, given the amplitude of the incident wave Sinc, the power
in each of the diffracted modes can be calculated. If the amplitudes
of the diffracted modes were calculated from electric field quantities,
power in the diffracted modes is computed according to

Re(m) =
|Sref(m)|2
|Sinc|2

Re

[
kref

z,m

kinc
z

]
(66)

Te (m) =
|Strn (m)|2
|Sinc|2

Re

[
ktrn

z,m

ktrn
z

µr,inc

µr,trn

]
(67)

If the amplitudes of the diffracted modes were calculated from magnetic
field quantities, power in the diffracted modes is computed according
to

Rh(m) =
|Sref (m)|2
|Sinc|2

Re

[
kref

z,m

kinc
z

]
(68)

Th(m) =
|Strn (m)|2
|Sinc|2

Re

[
ktrn

z,m

ktrn
z

εr,inc

εr,trn

]
(69)

The overall reflectance and transmittance is the sum of the power in
the diffraction orders.

Reflectance =
∑
m

R(m) (70)

Transmittance =
∑
m

T (m) (71)

If no loss or gain was incorporated into the model, the reflectance and
transmittance should add to be 100%. This is an excellent check to
perform at the end of the simulation. Numerical error in FDFD should
not deviate from conservation of energy by more than 1%. Deviations
on the order of 0.1% and 0.01% are typical.

∑
m

R (m) +
∑
m

T (m) =





< 100%

∼ 100%

> 100%

materials have loss

no loss and no gain

materials have gain

(72)
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5. APPLICATIONS

The following sections provide some practical applications of Eq. (55)
and how it is used to implement a TF/SF source in the FDFD method.

5.1. Periodic Structures

A basic and common simulation problem is transmission and reflection
from a periodic device like a grating, frequency selective surface, or
metamaterial. To illustrate the implementation in FDFD, a diffraction
grating in free space was simulated with period Λ = 0.9λ0, grating
depth d = 0.5λ0, substrate thickness t = 0.5λ0, dielectric constant
εr = 6.0, and duty cycle 50%. The device on the grid εr (x, y), source
field fsrc (x, y), masking function Q (x, y), and resulting field Ez (x, y)
are shown in Figure 7. This simulation used periodic boundary
conditions at the left and right boundaries and Dirichlet boundary
conditions with a PML at the top and bottom boundaries. The PML
size was set to 20 cells and the grid resolution was set to λ/10 for the
figure. The masking function Q (x, y) was designed to place only the
top PML plus one additional row of cells in the SF region. The extra
row of cells is where the reflected field was recorded and processed to
calculate reflection.

After running a second simulation at a higher grid resolution
of λ/40, the overall reflectance was calculated to be 42% and the
transmittance was 58%. The same simulation was performed with
rigorous coupled-wave analysis [31–33] using 121 spatial harmonics
which found the reflectance to be 41% and transmittance 59%. This
error of roughly 1% is not caused by the TF/SF framework. It is due
to the finite-difference approximations and reflections from the PML.
This is easily shown by using higher grid resolution and larger PMLs.
At a grid resolution of λ/120 and 40 points in the PML regions, the
FDFD method converges almost exactly to that of RCWA.

5.2. Waveguide Simulations

The TF/SF method presented in this work can be used to inject modal
sources into waveguides or other structures. An example simulation
and associated parameters are provided in Figure 8. Here, a slab
waveguide is terminated with an anti-reflection structure by angling the
end face. Figure 8(a) shows the materials for this problem placed onto
the grid. The thickness of the core was set to 0.75λ0 and the overall
thickness of the entire slab was set to 2λ0. The angled termination
was centered in the grid. Figure 8(b) shows the source field. In
this case, the “device” is the angled termination so the source was
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(a) (b) (c) (d)

Figure 7. FDFD simulation of a plane wave source incident on a
grating. (a) εr (x, y). (b) Re [fsrc(x, y)]. (c) Q (x, y). (d) Re [Ez(x, y)].

(a) (b)

(c) (d)

Figure 8. FDFD simulation with a modal source in a waveguide.
(a) εr (x, y). (b) Re [fsrc(x, y)]. (c) Q (x, y). (d) Re [Ez(x, y)].
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calculated as if the waveguide extended all the way across the grid.
Figure 8(c) shows the masking function Q (x, y) where the PMLs were
made to be in SF regions to minimize energy incident on them. The
TF region completely encapsulated the angled termination. Finally,
Figure 8(d) shows the calculated field. At a grid resolution of λ/60, it
was calculated that 1.8% of the energy was reflected by the termination
back into the fundamental mode when the angle of the termination was
set to α = 42◦ from vertical.

Several modifications to the basic FDFD algorithm were needed
to perform this simulation. First, it was necessary to calculate the
fundamental mode in the waveguide. To calculate a mode that is
compatible with FDFD, the finite-difference method was also used to
solve the cross section of the waveguide as a generalized eigen-value
problem. To do this, the cross section of the waveguide was extracted
from the array shown in Figure 8(a) and placed along the diagonal of
the sparse matrices µ′xx , µ′yy , µ′zz , ε′xx , ε′yy , and ε′zz . The prime
superscripts indicate these are 1D cross sections of the 2D grid and
different from the original materials matrices calculated by Eqs. (31)
and (32). The generalized eigen-value equations for the E- and H-
modes are (

Dh
x′µ

′−1
zz De

x′ + ε′yy
)
ez = n2

effµ′−1
xx ez (73)

(
De

x′ε
′−1
zz Dh

x′ + µ′yy
)
h̃z = n2

effε′−1
xx h̃z (74)

Two square matrices are produced during the iterative solution of
either of these equations. The eigen-vector matrix V contains in its
columns all of the field configurations that can exist in the cross section
of the 2D grid. Some of these eigen-modes are guided modes in the
slab. A diagonal eigen-value matrix N2

eff contains the calculated eigen-
values, which in this case are the squares of the effective refractive
indices of the eigen-modes. The fundamental mode can be identified
as having the effective refractive index closest to the refractive index
of the core, n2

eff ≈ εcore = 4.0. The true effective refractive index was
found to be neff = 1.94.

Let m be the column in V containing the identified fundamental
mode. The source is set to equal to this column as Esrc(y)=V(m). It
follows that the effective refractive index is neff=Neff(m). From this
data, the sourced field is calculated all the way across the grid as if the
slab waveguide was uniform. This is illustrated in Figure 8(b).

fsrc(x, y) = Esrc(y) · exp (−jk0neffx) (75)

Calculation of the masking function Q (x, y) and the resulting field
are straightforward and the results are shown in Figures 8(c) and (d).
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It was necessary to leave a column of cells between the left side PML
and the TF/SF boundary. This is the plane were the reflected field
Eref (y) was extracted. To calculate the fraction of energy reflected
by the termination back into the fundamental mode, it was necessary
to determine the energy in the fundamental mode given the reflected
field observed in this plane. This was accomplished using the concept
of mode coefficients. For the E-mode, the electric field e′z in a cross
section of the grid can be written as a weighted sum of the eigen-modes
in V. The column vector containing these weights is c and its relation
to the electric field e′z that exists in the cross section is

e′z = Vc (76)

The mode coefficients of the source and reflected waves were calculated
from Eq. (76) as

csrc = V−1e′z,src (77)

cref = V−1e′z,ref (78)

Finally, the reflectance in the fundamental mode is calculated as

R0 =
∣∣∣∣
cref (m)
cinc (m)

∣∣∣∣
2

(79)

5.3. Cylindrical Sources

The TF/SF method can also be used to inject cylindrical sources.
Objects illuminated by sources that are in close proximity are
sometimes more accurately modeled using cylindrical waves. To do
this, the SF region should completely enclose the dipole generator
producing the cylindrical wave. If the generator is outside of the grid,
the cylindrical wave source can be treated just like a plane wave source.
A simple example is depicted in Figure 9 where a cylindrical wave
illuminates a square dielectric object placed in free space. Plots (a)–
(d) show a first case where the simulation was performed without the
object on the grid. Plots (e)–(h) show the same simulation, but with
the square object placed onto the grid. The dielectric square was
made to have dimension 0.6λ0 and dielectric constant εr = 6.0. It
was positioned in the lower right part of the grid. A dipole generator
was placed in the upper left of the grid. The source field was calculated
throughout the entire grid according to the following equation where
the generator was centered at position (x0, y0).

fsrc (x, y)|cylindrical =
exp (−jkr)√

r
r =

√
(x− x0)

2 + (y − y0)
2 (80)
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 9. FDFD simulations using a cylindrical source. (a) εr (x, y).
(b) Re[fsrc(x, y)]. (c) Q (x, y). (d) Re [Ez(x, y)]. (e) εr (x, y).
(f) Re [fsrc(x, y)]. (g) Q (x, y). (h) Re [Ez(x, y)].

For this case, k = k0 is the free space wave number because the
dipole generator resides in free space, not inside a material. The source
field is shown in (b) and (f) and is the same for both cases. The masking
function Q (x, y) was defined to place the PMLs in the SF region as
well as to encircle the dipole generator with the scattered field. All
other points were made to be TF quantities. The Q (x, y) function
across the grid is visualized in (c) and (g) and was the same for both
cases.

The fields were calculated and are shown in (d) and (h). For the
case with no object present, the cylindrical wave is observed only in
the TF regions. No field was observed in the scattered-field regions
because there was no object to scatter waves. For the second case,
waves were clearly present in the scattered-field regions. These are the
waves that were scattered by the square object.

6. CONCLUSIONS

The TF/SF technique is a versatile method for incorporating sources
into an electromagnetic model. It can be used to minimize power
incident on absorbing boundary conditions and to automatically
separate the source from scattered waves for easier post-processing. In
FDFD, its implementation requires modifications to all of the finite-



Progress In Electromagnetics Research B, Vol. 36, 2012 245

difference equations that contain terms from both the TF and SF
regions. Incorporating all of these corrections is a difficult and tedious
task, particularly for oddly shaped TF/SF regions. In this paper, a
simple and powerful equation was derived to perform this task in a very
easy and straightforward manner. First, Maxwell’s equations were
converted to matrix form Ax=0 using the finite-difference method.
Second, the source vector b was calculated using the main equation
derived in this paper to put the matrix equation in the form of Ax=b.
This step automatically implemented the TF/SF framework for any
shape TF and SF regions. The complete matrix equation was then
solved according to x=A−1b to calculate the field x. A variety
of practical examples were given to demonstrate the implementation
and illustrate the method’s power, simplicity and versatility. These
included a periodic structure, a waveguide problem, and a scattering
problem with a cylindrical source.
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