Vol. 7
Latest Volume
All Volumes
PIERB 110 [2025] PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2008-04-28
A Cwa-Based Detection Procedure of a Perfectly-Conducting Cylinder Buried in a Dielectric Half-Space
By
Progress In Electromagnetics Research B, Vol. 7, 265-280, 2008
Abstract
The electromagnetic scattering problem of a short-pulse plane wave by a perfectly-conducting circular cylinder, buried in a dielectric half-space, is solved by means of a cylindrical-wave approach (CWA). The incident plane wave may have a rather general shape in the time domain. The technique is applicable for arbitrary polarization, or any cylinder size and burial depth, and it gives results both in the near- and in the far-field regions. In this work, an application of the technique to a basic but practical detection problem is presented, showing good results.
Citation
Fabrizio Frezza, Pasquale Martinelli, Lara Pajewski, and Giuseppe Schettini, "A Cwa-Based Detection Procedure of a Perfectly-Conducting Cylinder Buried in a Dielectric Half-Space," Progress In Electromagnetics Research B, Vol. 7, 265-280, 2008.
doi:10.2528/PIERB08032603
References

1. Van den Bosch, I., S. Lambot, M. Acheroy, I. Huynen, and P. Druyts, "Accurate and efficient modeling of monostatic GPR signal of dielectric targets buried in stratified media," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 3, 283-290, 2006.
doi:10.1163/156939306775701704

2. Frezza, F., P. Martinelli, L. Pajewski, and G. Schettini, "Short-pulse electromagnetic scattering from buried perfectly-conducting cylinders," IEEE Letters on Geoscience and Remote Sensing, Vol. 4, No. 4, 611-615, Oct. 2007.
doi:10.1109/LGRS.2007.903078

3. Chen, H. T. and G.-Q. Zhu, "Model the electromagnetic scattering from three-dimensional PEC object buried under rough ground by MOM and modified PO hybrid method," Progress In Electromagnetics Research, Vol. 77, 15-27, 2007.
doi:10.2528/PIER07072202

4. Li, Z.-X., "Bistatic scattering from rough dielectric soil surface with a conducting object with arbitrary closed contour partially buried by using the FBM/SAA method," Progress In Electromagnetics Research, Vol. 76, 253-274, 2007.
doi:10.2528/PIER07071501

5. Ahmed, S. and Q. A. Naqvi, "Electromagnetic scattering from a perfect electromagnetic conductor cylinder buried in a dielectric half-space," Progress In Electromagnetics Research, Vol. 78, 25-38, 2008.
doi:10.2528/PIER07081601

6. Di Vico, M., F. Frezza, L. Pajewski, and G. Schettini, "Scattering by a finite set of perfectly conducting cylinders buried in a dielectric half-space: A spectral-domain solution," IEEE Trans. Antennas Propagat., Vol. 53, 719-727, Feb. 2005.
doi:10.1109/TAP.2004.841315

7. Daniels, D. J., Surface-Penetrating Radar, 2nd Ed., IEE Radar Series, 2004.

8. Uduwawala, D., "Modeling and investigation of planar parabolic dipoles for GPR applications: a comparison with bow-tie using FDTD," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 2, 227-236, 2006.
doi:10.1163/156939306775777224

9. Moustafa, K. and K. A. Hussein, "Performance evaluation of separated aperture sensor GPR system for land mine detection," Progress In Electromagnetics Research, Vol. 72, 21-37, 2007.
doi:10.2528/PIER07022607

10. Chen, X., K. Huang, and X.-B. Xu, "Microwave imaging of buried inhomogeneous objects using parallel genetic algorithm combined with FDTD method," Progress In Electromagnetics Research, Vol. 53, 283-298, 2005.
doi:10.2528/PIER04102902

11. Nishimoto, M., S. Ueno, and Y. Kimura, "Feature extraction from GPR data for identification of landmine-like objects under rough ground surface," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 12, 1577-1586, 2006.
doi:10.1163/156939306779292318

12. Thomas, V., J. Yohannan, A. Lonappan, G. Bindu, and K. T. Mathew, "Localization of the investigation domain in electromagnetic imaging of buried 2-D dielectric pipelines with circular cross section," Progress In Electromagnetics Research, Vol. 61, 111-131, 2006.
doi:10.2528/PIER07100201

13. Tiwari, K. C., D. Singh, and M. K. Arora, "Development of a model for detection and estimation of depth of shallow buried non-metallic landmine at microwave X-band frequency," Progress In Electromagnetics Research, Vol. 79, 225-250, 2008.
doi:10.1364/JOSAA.13.000483

14. Borghi, R., F. Gori, M. Santarsiero, F. Frezza, and G. Schettini, "Plane-wave scattering by a perfectly conducting circular cylinder near a plane surface: Cylindrical-wave approach," J. Opt. Soc. Am. A, Vol. 13, 483-493, Mar. 1996.
doi:10.2528/PIER02042604

15. Ciambra, F., F. Frezza, L. Pajewski, and G. Schettini, "A spectral-domain solution for the scattering problem of a circular cylinder buried in a dielectric half-space," Progress In Electromagnetics Research, Vol. 38, 223-252, 2002.
doi:10.1163/156939399X01591

16. Borghi, R., F. Frezza, M. Santarsiero, C. Santini, and G. Schettini, "Numerical study of the reflection of cylindrical waves of arbitrary order by a generic planar interface," Journal of Electromagnetic Waves and Applications, Vol. 13, 27-50, Jan. 1999.
doi:10.1163/156939300X00121

17. Borghi, R., F. Frezza, M. Santarsiero, C. Santini, and G. Schettini, "A quadrature algorithm for the evaluation of a 2D radiation integral with highly oscillating kernel," Journal of Electromagnetic Waves and Applications, Vol. 14, 1353-1370, Oct. 2000.
doi:10.1029/2004RS003182

18. Di Vico, M., F. Frezza, L. Pajewski, and G. Schettini, "Scattering by buried dielectric cylindrical structures," Radio Science, Vol. 40, No. 6, Aug. 2005.
doi:10.1029/2004RS003182

19. Bertoni, H. L., L. Carin, and L. B. Felsen (eds.), Ultra-Wideband, Short-Pulse Electromagnetics, Plenum, 1994.

20. Carin, L. and L. B. Felsen (eds.), Ultra-Wideband, Short-Pulse Electromagnetics II, Plenum, 1995.

21. Losada, V., R. R. Boix, and F. Medina, "Short-pulse electromagnetic scattering from conducting circular plates," IEEE Trans.Ge osci.R emote Sensing, Vol. 41, 987-997, May 2003.

22. Brigham, E. O., The Fast Fourier Transform and Its Applications, Prentice-Hall, 1988.

23. Gurel, L. and U. Oguz, "Three-dimensional FDTD modeling of a ground-penetrating radar," IEEE Trans.Ge osci.R emote Sensing, Vol. 38, No. 4, 1513-1521, 2000.
doi:10.1109/36.851951

24. Felsen, L. B. and N. Marcuvitz, Radiation and Scattering of Waves, IEEE Press, 1994.