Vol. 137
Latest Volume
All Volumes
PIER 182 [2025] PIER 181 [2024] PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2013-02-14
New Negative Coupling Structure for Substrate-Integrated Cavity Resonators and Its Application to Design of an Elliptic Response Filter
By
Progress In Electromagnetics Research, Vol. 137, 117-127, 2013
Abstract
This paper presents a new type of a negative coupling structure for designing elliptic-response filters with cross-coupling. The proposed coupling structure consists of short-circuited coupled transmission lines. Using the fact that insertion phase of the coupled line structure is different from that of an inductive iris, it is shown that the proposed coupling structure can be used as the negative coupling structure. In order to verify the proposed coupling structure, we designed a 4th-order cross-coupled elliptic-response bandpass filter with substrate integrated waveguide resonators. A pair of transmission zeros in measurement and simulation results validates that the proposed structure can be used as the negative coupling structure.
Citation
Kangho Lee, Tae-Hak Lee, Young-Sik Kim, and Juseop Lee, "New Negative Coupling Structure for Substrate-Integrated Cavity Resonators and Its Application to Design of an Elliptic Response Filter," Progress In Electromagnetics Research, Vol. 137, 117-127, 2013.
doi:10.2528/PIER13012011
References

1. Gulgowski, J. and J. J. Michalski, "The analytic extraction of the complex-valued coupling matrix and its application in the microwave filter modeling," Progress In Electromagnetics Research, Vol. 130, 131-151, 2012.

2. Wang, R., J. Xu, C. L. Wei, M.-Y. Wang, and X.-C. Zhang, "Improved extraction of coupling matrix and unloaded Q from S-parameters of lossy resonator filters," Progress In Electromagnetics Research, Vol. 120, 67-81, 2011.

3. Xiao, K., L. F. Ye, F. Zhao, S.-L. Chai, and J. L.-W. Li, "Coupling matrix decomposition in designs and applications of microwave filters," Progress In Electromagnetics Research, Vol. 117, 409-423, 2011.

4. Ho, M.-H. and P.-F. Chen, "Suspended substrate stripline bandpass filters with source-load coupling structure using lumped and full-wave mixed approach," Progress In Electromagnetics Research, Vol. 122, 519-535, 2012.
doi:10.2528/PIER11102502

5. Chaudhary, G., Y. Jeong, K. Kim, and D. Ahn, "Design of dual-band bandpass filters with controllable bandwidths using new mapping function," Progress In Electromagnetics Research, Vol. 124, 17-34, 2012.
doi:10.2528/PIER11111407

6. Kuo, J.-T. and S.-W. Lai, "New dual-band bandpass filter with wide upper rejection band," Progress In Electromagnetics Research, Vol. 123, 371-384, 2012.
doi:10.2528/PIER11112304

7. Vegesna, S. and M. A. Saed, "Compact two-layer microstrip bandpass filters using broadside-coupled resonators," Progress In Electromagnetics Research B, Vol. 37, 81-102, 2012.
doi:10.2528/PIERB11101708

8. Mohan, A., S. Singh, and A. Biswas, "Generalized synthesis and design of symmetrical multiple passband filters," Progress In Electromagnetics Research B, Vol. 42, 115-139, 2012.

9. Jedrzejewski, A., L. Leszczynska, and M. Mrozowski, "Zero-pole approach to computer aided design of in-line SIW filters with transmission zeros," Progress In Electromagnetics Research, Vol. 131, 517-533, 2012.

10. Kuo, J.-T., S.-C. Tang, and S.-H. Lin, "Quasi-elliptic function bandpass filter with upper stopband extension and high rejection level using cross-coupled stepped-impedance resonators," Progress In Electromagnetics Research, Vol. 114, 395-405, 2011.

11. Zhu, Y.-Z., Y.-J. Xie, and H. Feng, "Novel microstrip bandpass filters with transmission zeros," Progress In Electromagnetics Research, Vol. 77, 29-41, 2007.
doi:10.2528/PIER07072301

12. Xu, Z.-B., J. Guo, C. Qian, and W.-B. Dou, "A novel quasi-elliptic aveguide transmit reject filter for Ku-band VSAT transceivers," Progress In Electromagnetics Research, Vol. 117, 393-407, 2011.

13. Kajfez, D. and P. Guillon, Dielectric Resonators, Noble Publishing Corp., Atlanta, GA, 1998.

14. Chen, X.-P. and K. Wu, "Substrate integrated waveguide cross-coupled filter with negative coupling structure," IEEE Trans. Microwave Theory Tech., Vol. 56, No. 1, 142-149.
doi:10.1109/TMTT.2007.912222

15. Shen, W., L.-S.Wu, X.-W. Sun, W.-Y. Yin, and J.-F. Mao, "Novel substrate integrated waveguide filters with mixed cross coupling (MCC)," IEEE Microwave Wireless Compon. Lett., Vol. 19, No. 11, 701-703.
doi:10.1109/LMWC.2009.2032007

16. Zhang, R. and R. R. Mansour, "Low-cost dielectric-resonator filters with improved spurious performance," IEEE Trans. Microwave Theory Tech., Vol. 55, No. 10, 2168-2175, Oct. 2007.
doi:10.1109/TMTT.2007.906540

17. Williams, A. E., "A four-cavity elliptic waveguide filter," IEEE Trans. Microwave Theory Tech., Vol. 18, No. 12, 1109-1114.
doi:10.1109/TMTT.1970.1127419

18. Kudsia, C. M., "A generalized approach to the design and optimization of symmetrical microwave filters for communications systems,", Ph.D. dissertation, Dept. Eng., Concordia Univ., Quebec, QC, Canada, 1978.

19. Hong, J.-S. and M. J. Lancaster, Microstrip Filter for RF/Microwave Applications, Wiley, New York, 2001.