Vol. 111
Latest Volume
All Volumes
PIER 181 [2024] PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2010-11-27
Tunable and Switchable Bandpass Filters Using Slot-Line Resonators
By
Progress In Electromagnetics Research, Vol. 111, 25-41, 2011
Abstract
In this paper, novel uniplanar tunable and switchable bandpass filters are designed by using the centrally-loaded slot-line resonator. From the voltage-wave distribution along the resonator, the appropriate location for the loading element is determined to be the center of the slot-line resonator, where the voltages of the fundamental signal and second harmonic are maximum and zero, respectively. As a result, the fundamental frequency can be tuned while the second harmonic remains almost unchanged. For the first time, the properties of the centrally-loaded slot-line resonator are analyzed by using the even- and odd-mode method, and their respective resonant frequencies are derived. The demonstrated tunable bandpass filter can give a 30.9% frequency tuning range with acceptable insertion loss when a varactor is used as the loading element. By replacing the loading varactors with PIN diodes, a switchable bandpass filter is realized in which the attenuation in the fundamental passband can be controlled. In experiments, the switchable bandpass filter exhibits a 2.13 dB insertion loss in the fundamental passband when the PIN diodes are off and more than 49 dB isolation across the passband when the PIN diodes are on.
Citation
Jian-Xin Chen, Jin Shi, Zhi-Hua Bao, and Quan Xue, "Tunable and Switchable Bandpass Filters Using Slot-Line Resonators," Progress In Electromagnetics Research, Vol. 111, 25-41, 2011.
doi:10.2528/PIER10100808
References

1. Ouyang, J., F. Yang, Z. P. Nie, and Z. Q. Zhao, "A novel frequency reconfigurable microstrip antenna for wideband application," Journal of Electromagnetic Waves and Applications, Vol. 22, No. 10, 1403-1410, 2008.
doi:10.1163/156939308786348956

2. Monti, G., R. De Paolis, and L. Tarricone, "Design of a 3-state reconfigularable CRLH transmission line based on MEMS switches," Progress In Electromagnetics Research, Vol. 95, 283-297, 2009.
doi:10.2528/PIER09071109

3. Vazquez, C., G. Hotopan, S. Ver Hoeye, M. Fernandez, L. F. Herran, and F. Las Heras, "Microstrip antenna design based on stacked patches for reconfigurable two dimensional planar array topologies," Progress In Electromagnetics Research, Vol. 97, 95-104, 2009.
doi:10.2528/PIER09072107

4. Ourir, A., R. Abdeddaim, and J. de Rosny, "Tunable trapped mode in symmetric resonator designed for metamaterials," Progress In Electromagnetics Research, Vol. 101, 115-123, 2010.
doi:10.2528/PIER09120709

5. Soliman, E. A., W. De Raedt, and G. A. E. Vandenbosch, "Reconfigurable slot antenna for polarization diversity," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 7, 905-916, 2009.
doi:10.1163/156939309788355207

6. Kim, J. and J. Choi, "Varactor-tuned microstrip bandpass filter with wide tuning range," Microwave and Optical Technology Letters, Vol. 50, 2574-2577, Oct. 2008.

7. Chang, K., S. Martin, F. Wang, and J. L. Klein, "On the study of microstrip ring and varactor-tuned ring circuits," IEEE Transactions on Microwave Theory and Techniques, Vol. 35, 1288-1295, Dec. 1987.
doi:10.1109/TMTT.1987.1133850

8. Torregrosa-Penalva, G., et al., "A simple method to design wide-band electronically tunable combline filters," IEEE Transactions on Microwave Theory and Techniques, Vol. 50, 172-177, Jan. 2002.
doi:10.1109/22.981262

9. Masone, D. F. and J. C. Moreira, "Versatile microwave dual-band tunable resonator," IET Microwaves, Antennas & Propagation, Vol. 3, 71-76, 2009.
doi:10.1049/iet-map:20070297

10. Sanchez-Renedo, M., et al., "Tunable combline filter with continuous control of center frequency and bandwidth," IEEE Transactions on Microwave Theory and Techniques, Vol. 53, 191-199, Jan. 2005.
doi:10.1109/TMTT.2004.839309

11. Mohra, A. S. and O. F. Siddiqui, "Tunable bandpass filter based on capacitor-loaded metamaterial lines," Electronics Letters, Vol. 45, 470-472, Apr. 2009.
doi:10.1049/el.2009.2699

12. Abbaspour-Tamijani, A., L. Dussopt, and G. M. Rebeiz, "Miniature an tunable filters using MEMS capacitors," IEEE Transactions on Microwave Theory and Techniques, Vol. 51, 1878-1885, Jul. 2003.
doi:10.1109/TMTT.2003.814317

13. Mercier, D., et al., "Millimeter-wave tune-all bandpass filters," IEEE Transactions on Microwave Theory and Techniques, Vol. 52, 1175-1181, Apr. 2004.
doi:10.1109/TMTT.2004.825744

14. Park, S.-J., M. A. El-Tanani, I. Reines, and G. M. Rebeiz, "Low-loss 4-6-GHz tunable filter with 3-bit high-Q orthogonal bias RFMEMS capacitance network," IEEE Transactions on Microwave Theory and Techniques, Vol. 56, 2348-2355, Oct. 2008.

15. Lugo, Jr., C. and J. Papapolymerou, "Electronic switchable bandpass filter using PIN diodes for wireless low cost system-on-a-package applications," IEE Proc. --- Microw. Antennas Propag., Vol. 151, 497-502, Dec. 2004.
doi:10.1049/ip-map:20040897

16. Tu, W.-H. and K. Chang, "Piezoelectric transducer-controlled dual-mode dual-mode switchable bandpass filter," IEEE Microwave and Wireless Components Letters, Vol. 17, 199-201, Mar. 2007.
doi:10.1109/LMWC.2006.890472

17. Chao, S.-F., C.-H. Wu, Z.-M. Tsai, H. Wang, and C. H. Chen, "Electronically switchable bandpass filters using loaded stepped-impedance resonators," IEEE Transactions on Microwave Theory and Techniques, Vol. 54, 4193-4201, Dec. 2006.
doi:10.1109/TMTT.2006.885898

18. Dai, G. L., X. Y. Zhang, C. H. Chan, Q. Xue, and M. Y. Xia, "An investigation of open- and short-ended resonators and their applications to bandpass filters," IEEE Transactions on Microwave Theory and Techniques, Vol. 57, 2203-2210, Sep. 2009.

19. Mariani, E. A. and J. P. Agrios, "Slot-line filters and couplers," IEEE Transactions on Microwave Theory and Techniques, Vol. 18, 1089-1095, Dec. 1970.
doi:10.1109/TMTT.1970.1127416

20. Azadegan, R. and K. Sarabandi, "Miniature high-Q double-spiral slot-line resonator filters," IEEE Transactions on Microwave Theory and Techniques, Vol. 52, 1548-1557, May 2004.
doi:10.1109/TMTT.2004.827044

21. Rahman, A. A., A. R. Ali, S. Amari, and A. S. Omar, "Compact bandpass filter using defected ground structure (DGS) coupled resonators," IEEE MTT-S Int. Dig., 1479-1482, 2005.
doi:10.1109/MWSYM.2005.1516971

22. Deleniv, A., M. Gashinova, A. Eriksson, and A. Khalabuhov, "Novel band-pass filter utilizing S-shaped slot line resonators," IEEE MTT-S Int. Dig., 1081-1084, 2003.

23. Mandal, M. K. and S. Sanyal, "Compact wide-band bandpass filter using microstrip to slotline broadside-coupling," IEEE Microwave and Wireless Components Letters, Vol. 17, 640-642, Sep. 2007.
doi:10.1109/LMWC.2007.903436

24. Li, R., S. Sun, and L. Zhu, "Synthesis design of ultra-wideband bandpass filters with composite series and shunt stubs," IEEE Transactions on Microwave Theory and Techniques, Vol. 57, 684-692, Mar. 2009.

25. Mondal, P. and A. Chakrabarty, "Compact wideband bandpass filters with wide upper stopband," IEEE Microwave and Wireless Components Letters, Vol. 17, 31-33, Jan. 2007.
doi:10.1109/LMWC.2006.887247

26. Velazquez-Ahumada, M. D. C., J. Martel, F. Medina, and F. Mesa, "Application of stub loaded folded stepped impedance resonators to dual band filter design," Progress In Electromagnetics Research, Vol. 102, 107-124, 2010.
doi:10.2528/PIER10011406

27. Velazquez-Ahumada, M. D. C., J. Martel, F. Medina, and F. Mesa, "Design of a band-pass using stepped impedance resonators with floating conductors," Progress In Electromagnetics Research, Vol. 105, 31-48, 2010.
doi:10.2528/PIER10042010

28. Pozar, D. M., Microwave Engineering, 2 Ed., Wiley, New York, 1998.

29. Zhang, X. Y. and Q. Xue, "Novel centrally loaded resonators and their applications to bandpass filters," IEEE Transactions on Microwave Theory and Techniques, Vol. 56, 913-921, Apr. 2008.
doi:10.1109/TMTT.2008.919648

30. Hong, J.-S. and M. J. Lancaster, Microstrip Filter for RF/Microwave Applications, Wiley, New York, 2001.
doi:10.1002/0471221619