submit Submit login
Vol. 108
Latest Volume
All Volumes
PIER 182 [2025] PIER 181 [2024] PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2010-09-30
A Novel Adaptive Wi-Fi System with RFID Technology
By
Progress In Electromagnetics Research, Vol. 108, 417-432, 2010
Abstract
A novel adaptive Wireless-Fidelity (Wi-Fi) system is the combination of radio frequency identification (RFID) technology, programmable intelligent microcontroller development board (PIDB) and reconfigurable antenna with beam shape characteristics. The system is capable to sustain a Wi-Fi signal adaptively above its threshold level (-81 dBm) within a range up to 100 m across three different buildings with variety indoor environments and floors. It is found that the modified ground reflection model has successfully predicted the total path loss of the test-bay buildings which consist of corridors, several floors and windows. The modified propagation model is extremely crucial in determining the projection and height of reconfigurable antenna to efficiently cover the scattered measurement points across the three buildings. The need of comparable signal strength is compulsory since the signal strength between 2.4 GHz of reconfigurable beam shape antenna and 0.433 GHz of RFID tag is different within the same distance. When reconfigurable beam shape antenna radiates with a minimum gain of 4.85 dBi, the measured signal strength shows that most of the measurement points are below Wi-Fi‟s threshold level which is from -69.001 dBm to -115.4530 dBm. However, the proposed system is able to boost all the signal strength above the threshold level with three different gain of reconfigurable beam shape antenna, 7.2 dBi, 9.9 dBi and 14.64 dBi through the activation of mobile RFID tag at different measurement points at one time. The boosted signal strengths are within the range of -69 dBm to -73.056 dBm. The capability of the mobile RFID tag in producing certain level of signal strength has been successfully exploited as a wireless stimulator for the system to adaptively activate certain PIN diode switches of reconfigurable beam shape antenna in this finding. The proposed system also has a great potential in realizing a new smart antenna system replacing the conventional switching beam array (SBA) antenna.
Citation
Mohd Faizal Bin Jamlos, Tharek Bin Abdul Rahman, Muhammad Ramlee Kamarudin, P. Saad, M. Amir Shamsudin, and A. M. M. Dahlan, "A Novel Adaptive Wi-Fi System with RFID Technology," Progress In Electromagnetics Research, Vol. 108, 417-432, 2010.
doi:10.2528/PIER10071904
References

1. Jamlos, M. F., O. A. Aziz, T. A. Rahman, M. R. Kamarudin, P. Saad, M. T. Ali, and M. N. Md Tan, "A reconfigurable radial line slot array (RLSA) antenna for beam shape and broadside application," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 8-9, 1171-1182, 2010.
doi:10.1163/156939310791586007

2. Yarkony, N. and N. Blaunstein, "Prediction of propagation characteristics in indoor radio communication environments," Progress In Electromagnetics Research, Vol. 59, 151-174, 2006.
doi:10.2528/PIER05090801

3. Phaiboon, S. and P. Phokharatkul, "Path loss prediction for low-rise buildings with image classification on 2-D aerial photographs," Progress In Electromagnetics Research, Vol. 95, 135-152, 2009.
doi:10.2528/PIER09061101

4. Rappaport, T. S., Wireless Communications: Principles and Practice, Prentice Hall, Dec. 2001.

5. Liechty, L. C., E. Reifsnider, and G. Durgin, "Developing the best 2.4 GHz propagation model from active network measurements," IEEE 66th Vehicular Technology Conference, 894-896, 2007.
doi:10.1109/VETECF.2007.195

6. TheoFIlogiannakos, G. K., T. V. Yioultsis, and T. D. Xenos, "Experimental validation of a hybrid wide-angle parabolic equation --- Integral equation technique for modeling wave propagation in indoor wireless communications," Progress In Electromagnetics Research, Vol. 82, 333-350, 2008.
doi:10.2528/PIER08031903

7. Yang, F. and Y. Rahmat-Samii, "Reflection phase characterizations of the EBG ground plane for low profile wire antenna applications," IEEE Transactions on Antennas and Propagation, Vol. 51, No. 10, 2691-2703, 2003.
doi:10.1109/TAP.2003.817559

8. Promwong, S., P. Supanakoon, and J.-I. Takada, "Ground reflection transmission loss evaluation scheme for ultrawideband impulse radio," Ecti Transactions on Electrical Eng., Electronics, and Communications, Vol. 5, No. 1, 2007.

9. Dwivedi, V. K., A. Gupta, R. Kumar, and G. Singh, "Performance analysis of coded OFDM system using various coding schemes," PIERS Proceedings, 1249-1253, Moscow, Russia, 2009.

10. Choi, S. W., W. R. Oh, and H. J. Hong, "Method for calculating interference protection ratio of atsc system from mobile WiMAX system," PIERS Proceedings, 619-623, Moscow, Russia, 2009.

11. Prieto, J. B., P. F. Reguero, R. M. L. Toledo, E. J. Abril, S. M. Franco, A. B. Martinez, and D. Bullid, "A model for transition between outdoor and indoor propagation," Progress In Electromagnetics Research, Vol. 85, 147-167, 2008.
doi:10.2528/PIER08072101

12. Hodgkinson, T. G., "Wireless communications --- The fundamentals," BT Technology Journal Springer, 11-26, 2007.
doi:10.1007/s10550-007-0025-5

13. Zaggoulos, G. and A. Nix, "WLAN/WDS performance using directive antennas in highly mobile scenarios: Experimental results," Wireless Communications and Mobile Computing Conference, IWCMC, 700-705, 2008.
doi:10.1109/IWCMC.2008.121

14. Kotz, D., C. Newport, R. S. Gray, J. Liu, Y. Yuan, and C. Elliott, "Experimental evaluation of wireless simulation assumptions,", Technical Report TR2004-507, Department of Computer Science, Dartmouth College, 2004.

15. Tayebi, A., J. Gomez, F. Saez de Adana, and O. Gutierrez, "The application of ray-tracing to mobile localization using the direction of arrival and received signal strength in multipath indoor environments," Progress In Electromagnetics Research, Vol. 91, 1-15, 2009.
doi:10.2528/PIER09020301

16. Seow, C. K. and S. Y. Tan, "Localization of omni-directional mobile Device in multipath environments," Progress In Electromagnetics Research, Vol. 85, 323-348, 2008.
doi:10.2528/PIER08090302

17. Abdolee, R., W.-P. Zhu, and M. Sawan, "Digital beam-forming implementation for downlink smart antenna system," 52nd IEEE International Midwest Symposium on Circuits and Systems, 615-619, 2009.
doi:10.1109/MWSCAS.2009.5236019

18. Helhel, S., Ş. Özen, and H. Göksu, "Investigation of GSM signal variation dry and wet earth effects," Progress In Electromagnetics Research B, Vol. 1, 147-157, 2008.
doi:10.2528/PIERB07101503

19. Wu, R.-H., Y.-H. Lee, H.-W. Tseng, Y.-G. Jan, and M.-H. Chuang, "Study of characteristics of RSSI signal," IEEE International Conference on Industrial Technology (IEEE ICIT), 1-3, 2008.

20. Nafarieh, A. and J. Ilow, "A testbed for localizing wireless LAN devices using received signal strength," IEEE Communication Networks and Services Research Conference, 481-487, 2008.

21. Bouchereau, F. and D. Brady, "Bounds on range-resolution degradation using RSSI measurements," IEEE International Conference on Communications, Vol. 6, 3246-3250, 2004.

22. Ridgers, T. J., C. Boucey, J.-P. Frambach, L. R. du Roscoat, and P. Gamand, "Challenges in integrating embedded RF within a SOC," IEEE Radio and Wireless Symposium (RWS), 547-550, 2008.