Vol. 32
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
0000-00-00
Higher Order Whitney Forms
By
, Vol. 32, 271-299, 2001
Abstract
The calculus of differential forms can be used to devise a unified description of discrete differential forms of any order and polynomial degree on simplicial meshes in any spatial dimension. A general formula for suitable degrees of freedom is also available. Fundamental properties of nodal interpolation can be established easily. It turns out that higher order spaces, including variants with locally varying polynomial order, emerge from the usual Whitneyforms by local augmentation. This paves the way for an adaptive pversion approach to discrete differential forms.
Citation
R. Hiptmair, "Higher Order Whitney Forms," , Vol. 32, 271-299, 2001.
doi:10.2528/PIER00080111
References

1. Andersen, L. and J. Volakis, "Development and application of a novel class of hierarchical tangential vector finite elements for electromagnetics," IEEE Trans. Antennas and Propagation, Vol. 47, 112-120, 1999.
doi:10.1109/8.753001

2. Babuska, I., M. Griebel, and J. Pitkaranta, "The problem of selecting the shape functions for a p-type finite element," Int. J. Num. Meth. Engin., Vol. 28, 1891-1908, 1988.
doi:10.1002/nme.1620280813

3. Baldomir, D. and P. Hammond, Geometry of Electromagnetic Systems, Clarendon Press, Oxford, 1996.

4. Beck, R., R. Hiptmair, and B. Wohlmuth, "A hierarchical error estimator for eddy current computation," ENUMATH 99 — Proceedings of the 3rd European Conference on Numerical Mathematics and Advanced Applications, P. Neittaanmaki and T. Tiihonen (eds.), July 26–30, Jyvskyl, Finland, 110–120, World Scientific, Singapore, 2000.

5. Boffi, D., "Discrete compactness and Fortin operator for edge elements," Tech. Rep. AM187, Department of Mathematics, Pennsylvania State University, State College, USA, April 1999. To appear in Numerische Mathematik.

6. Bossavit, A., "Mixed finite elements and the complex of Whitney forms," The Mathematics of Finite Elements and Applications VI, J. Whiteman (ed.), 137–144, Academic Press, London, 1988.

7. Bossavit, A., "Whitney forms: A class of finite elements for threedimensional computations in electromagnetism," IEE Proc. A, Vol. 135, 493-500, 1988.
doi:10.1049/ip-d.1988.0075

8. Bossavit, A., "On the geometry of electromagnetism IV: “Maxwell’s house," J. Japan Soc. Appl. Electromagnetics & Mech., Vol. 6, 318-326, 1998.

9. Brenner, S. and R. Scott, Mathematical Theory of Finite Element Methods, Texts in Applied Mathematics, Springer-Verlag, New York, 1994.
doi:10.1007/978-1-4757-4338-8

10. Caorsi, S., P. Fernandes, and M. Raffetto, "On the convergence of Galerkin finite element approximations of electromagnetic eigenproblems," SIAM J. Numer. Anal., To appear.

11. Cartan, H., Formes Differentielles, Hermann, Paris, 1967.

12. Ciarlet, P., "The finite element method for elliptic problems," Studies in Mathematics and its Applications, Vol. 4, North-Holland, Amsterdam, 1978.

13. Demkowicz, L., P. Monk, L. Vardapetyan, and W. Rachowicz, "De Rham diagram for hp finite element spaces," Tech. Rep., 99-06, TICAM, University of Texas, Austin, TX, 1999.

14. Deschamps, G., "Electromagnetics and differential forms," Proc. IEEE, Vol. 69, 676-695, 1981.
doi:10.1109/PROC.1981.12048

15. Elmkies, A. and P. Joly, "Elements finis et condensation de masse pour les equations des Maxwell: le cas 3D," Tech. Rep., 3381, INRIA, Roucquencourt, Domaine de Voluveau, France, May 1998.

16. Graglia, R., D. Wilton, and A. Peterson, "Higher order interpolatory vector bases for computational electromagnetics," IEEE Trans. Antennas and Propagation, Vol. 45, 329-342, 1997.
doi:10.1109/8.558649

17. Graglia, R., D. Wilton, A. Peterson, and I.-L. Gheorma, "Higher order interpolatory vector bases on prism elements," IEEE Trans. Antennas and Propagation, Vol. 46, 442-450, 1998.
doi:10.1109/8.662664

18. Hiptmair, R., "Canonical construction of finite elements," Math. Comp., Vol. 68, 1325-1346, 1999.
doi:10.1090/S0025-5718-99-01166-7

19. Iwaniec, T., "Nonlinear differential forms,” “Lectures notes of the International Summer School in Jyvaskyla,", 1998 80, University of Jyvaskyla, Department of Mathematics, Jyvaskyla, Finland, 1999.

20. Monk, P., "On the p and hp-extension of Nedelec’s conforming elements," J. Comp. Appl. Math., Vol. 53, 117-137, 1994.
doi:10.1016/0377-0427(92)00127-U

21. Monk, P. and L. Demkowicz, "Discrete compactness and the approximation of Maxwell’s equations in R3," Math. Comp., 1999, to appear.
doi:10.1016/0377-0427(92)00127-U

22. Nedelec, J., "Mixed finite elements in R3," Numer. Math., Vol. 35, 315-341, 1980.
doi:10.1007/BF01396415

23. Nedelec, J., "A new family of mixed finite elements in R3," Numer. Math., Vol. 50, 57-81, 1986.
doi:10.1007/BF01389668

24. Peng, G., R. Dyczij-Edlinger, and J.-F. Lee, "Hierarchical methods for solving matrix equations from TVFEMs for microwave components," IEEE Trans. Mag., Vol. 35, 1474-1477, 1998.
doi:10.1109/20.767245

25. Raviart, P. A. and J. M. Thomas, "A mixed finite element method for second order elliptic problems," Springer Lecture Notes in Mathematics, Vol. 606, 292-315, Springer-Verlag, New York, 1977.
doi:10.1007/BFb0064470

26. Savage, J. and A. Peterson, "Higher order vector finite elements for tetrahedral cells," IEEE Trans. Microwave Theory and Techniques, Vol. 44, 874-879, 1996.
doi:10.1109/22.506446

27. Whitney, H., Geometric Integration Theory, Princeton Univ. Press, Princeton, 1957.
doi:10.1515/9781400877577

28. Yiailtsis, T. and T. Tsiboukis, "A systematic approach to the construction of higher order vector finite elements for three-dimensional electromagnetic field computation," COMPEL, Vol. 14, 49-53, 1995.
doi:10.1108/eb051912