Vol. 32
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
0000-00-00
Discrete Electromagnetism with the Finite Integration Technique
By
, Vol. 32, 65-87, 2001
Abstract
The Finite Integration Technique (FIT) is a consistent discretization scheme for Maxwell's equations in their integral form. The resulting matrix equations of the discretized fields can be used for efficient numerical simulations on modern computers. In addition, the basic algebraic properties of this discrete electromagnetic field theory allow to analytically and algebraically prove conservation properties with respect to energy and charge of the discrete formulation and gives an explanation of the stability properties of numerical formulations in the time domain.
Citation
Markus Clemens, and Thomas Weiland, "Discrete Electromagnetism with the Finite Integration Technique," , Vol. 32, 65-87, 2001.
doi:10.2528/PIER00080103
References

1. Weiland, T., "A discretization method for the solution of Maxwell’s equations for six-component fields," Electronics and Communications AEU, Vol. 31, No. 3, 116-120, 1977.

2. Tonti, E., "On the geometrical structure of electromagnetism," Gravitation, Electromagnetism and Geometrical Structures, G. Ferraese (ed.), 281–308, Pitagora, Bologna, 1996.

3. Bossavit, A., L. Kettunen, and T. Tarhassaari, "Some realizations of a discrete Hodge operator: A reinterpretation of the finite element technique," IEEE Transactions on Magnetics, Vol. 35, 1494-1497, May 1999.
doi:10.1109/20.767212

4. Teixeira, F. L. and W. C. Chew, "Lattice electromagnetic theory from a topological viewpoint," Journal of Mathematical Physics, Vol. 40, No. 1, 169-187, 1999.
doi:10.1063/1.532767

5. Nedelec, J. C., "Mixed finite elements in R3," Numerische Mathematik, No. 35, 315-341, 1980.
doi:10.1007/BF01396415

6. van Rienen, U. and T. Weiland, "Triangular discretization method for the evaluation of RF-fields in cylindrically symmetric cavities," IEEE Transactions on Magnetics, Vol. 21, No. 6, 2317-2320, 1985.
doi:10.1109/TMAG.1985.1064183

7. Schuhmann, R. and T. Weiland, "A stable interpolation technique for FDTD on nonorthogonal grids," International Journal on Numerical Modelling, Vol. 11, 299-306, May 1998.
doi:10.1002/(SICI)1099-1204(199811/12)11:6<299::AID-JNM314>3.0.CO;2-A

8. Thoma, P. and T. Weiland, "A consistent subgridding scheme for the finite difference time domain method," International Journal of Numerical Modelling, Vol. 9, 359-374, 1996.
doi:10.1002/(SICI)1099-1204(199609)9:5<359::AID-JNM245>3.0.CO;2-A

9. Chen, W. K., Graph Theory and It’s Engineering Applications, Vol. 5, Advanced Series in Electrical and Computer Engineering, World Scientific, Singapor, 1996.

10. Weiland, T., "Time domain electromagnetic field computation with finite difference methods," International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, Vol. 9, 259-319, 1996.

11. Clemens, M., "Zur numerischen Berechnung zeitlich langsamver ¨anderlicher elektromagnetischer Felder mit der Finiten- Integrations-Methode,", Ph.D. thesis, Technische Universitat Darmstadt, 1998.

12. Weiland, T., "Lossy waveguides with arbitrary boundary contour and distribution of material," Electronics and Communications AEU, Vol. 33, 170, 1979.

13. Muller, W. and W. Wolff, "Ein Beitrag zur numerischen Berechnung von Magnetfeldern," Elektrotechnische Zeitung, Vol. 96, 269-273, 1975.

14. Muller, W., J. Kr¨uger, A. Jacobus, R. Winz, T.Weiland, H. Euler, U. Kamm, and W. R. Novender, "Numerical solution of 2- and 3- dimensional nonlinear field problems by means of the computer program PROFI," Archiv fur Elektrotechnik, Vol. 65, 299-307, 1982.
doi:10.1007/BF01452154

15. Krietenstein, B., P. Thoma, R. Schuhmann, and T. Weiland, "The perfect boundary approximation technique facing the big challenge of high precision computation," Proceedings of the 19th LINAC Conference, Chicago, August 1998.

16. Schuhmann, R. and T. Weiland, "FDTD on nonorthogonal grids with triangular fillings," IEEE Transactions on Magnetics, Vol. 35, 1470-1473, May 1999.
doi:10.1109/20.767244

17. Clemens, M., M. Hilgner, R. Schuhmann, and T. Weiland, "Transient eddy current simulation using the nonorthogonal finite integration technique," Conference Records of the CEFC 2000, Milwaukee, 385, 2000. Full paper submitted to IEEE Transactions on Magnetics.

18. Gutschling, S., "Zeitbereichsverfahren zur simulation elektromagnetischer felder in dispersiven materialien," Ph.D. thesis, Technische Universitat Darmstadt, 1998.

19. Gutschling, S., H. Kruger, H. Spachmann, and T. Weiland, "FIT-formulation for nonlinear dispersive media," International Journal on Numerical Modelling, Vol. 12, 81-92, 1999.

20. Kruger, H., H. Spachmann, and T. Weiland, "FIT-formulation for gyrotropic media," Proceedings of the ICCEA1999, Torino, Italy, 1999.

21. Clemens, M., S. Drobny, and T. Weiland, "Time integration of slowly-varying electromagnetic field problems using the finite integration technique," Proceedings of the ENUMATH 97, 246-253, Heidelberg, 1999.

22. Bossavit, A. and L. Kettunen, "Yee-like schemes on a tetrahedral mesh, with diagonal lumping," International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, Vol. 12, No. 1/2, 129-142, 1999.
doi:10.1002/(SICI)1099-1204(199901/04)12:1/2<129::AID-JNM327>3.0.CO;2-G

23. Janich, K., Vektoranalysis, 191-222, Springer Lehrbuch, Springer, 1993.
doi:10.1007/978-3-662-10752-2

24. Weiland, T., "On the unique numerical solution of Maxwellian eigenvalue problems in three dimensions," Particle Accelerators, Vol. 17, 227-242, 1985.

25. Tonti, E., "Discrete formulation of the electromagnetic field,", University Trieste, 34127 Trieste, Italy, 1998.

26. Thoma, P. and T. Weiland, "Numerical stability of finite difference time domain methods," IEEE Transactions on Magnetics, Vol. 34, No. 5, 2740-2743, 1998.
doi:10.1109/20.717636

27. Schmitt, D., "Zur numerischen berechnung von resonatoren und wellenleitern,", Ph.D. thesis, Technische Hochschule Darmstadt, 1994.

28. Hahne, P., "Zur numerischen berechnung zeitharmonischer elektromagnetischer felder,", Ph.D. thesis, Technische Hochschule Darmstadt, 1992.

29. Bossavit, A., "`stiff’ problems in eddy-current theory and the regularization of Maxell’s equations," Conference Records of the CEFC 2000, Milwaukee, 497, 1997. Full paper submitted to IEEE Transactions on Magnetics.

30. Grosmann, C. and H.-G. Roos, Numerik partieller Differentialgleichungen, B. G. Teubner Verlag, Stuttgart, 1994.
doi:10.1007/978-3-322-96752-7

31. Schuhmann, R. and T. Weiland, "Conservation of discrete energy and related laws in the finite integration technique,", this volume.

32. Zienkiewicz, O. C., "A new look at the Newmark, Houbolt and other time stepping formulas. A weighted residual approach," Earthquake Engineering and Structural Dynamics, Vol. 5, 413-418, 1977.
doi:10.1002/eqe.4290050407

33. Zienkiewicz, O. C., W. L. Wood, N. H. Hine, and R. L. Taylor, "A unified set of single step algorithms; part 1," Int. J. for Num. Meth. in Eng., Vol. 20, 1529-1552, 1984.
doi:10.1002/nme.1620200814

34. Monk, P., "A mixed method for approximating Maxwell’s equations," SIAM J. Numer. Anal., Vol. 28, 1610-1634, December 1991.
doi:10.1137/0728081

35. Clemens, M. and T. Weiland, "Transient eddy current calculation with the FI-method," IEEE Transactions on Magnetics, Vol. 35, 1163-1166, May 1999.
doi:10.1109/20.767155

36. Clemens, M. and T. Weiland, "Numerical algorithms for the FDiTD and FDFD simulation of slowly-varying electromagnetic fields," Int. J. Numerical Modelling, Special Issue on Finite Difference Time Domain and Frequency Domain Methods, Vol. 12, No. 1/2, 3-22, 1999.

37. Drobny, S., M. Clemens, and T. Weiland, "Dual nonlinear magnetostatic formulations using the finite integration technique," Conference Records of the CEFC 2000, Milwaukee, 392, 2000. Full paper submitted to IEEE Transactions on Magnetics.