Vol. 182
Latest Volume
All Volumes
PIER 183 [2025] PIER 182 [2025] PIER 181 [2024] PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2025-03-07
Geometrical Modeling and Experimental Measurements of Indoor mmWave Communication Systems Including Finite-Area Reflective Surfaces
By
Progress In Electromagnetics Research, Vol. 182, 107-119, 2025
Abstract
This work, for the first time to our knowledge, describes in detail the incorporation of the numerical and semi-analytical intelligent reflector scattering models into the modelling framework of the state-of-art dual-polarization three-dimensional geometrical channel models, where propagation channel impact and antennas impact are separated. The proposed formalism allows indoor coverage impact studies of the meta reflectors in mmWave and THz radio communication systems. The model considers reflector phase-design, near-field effects, polarization transformations, incident beam patterns, multipath and diffraction effects, and is confirmed by full-wave simulations and measurements.
Citation
Viacheslav Ivanov, Alexander Volkov, and David R. Peters, "Geometrical Modeling and Experimental Measurements of Indoor mmWave Communication Systems Including Finite-Area Reflective Surfaces," Progress In Electromagnetics Research, Vol. 182, 107-119, 2025.
doi:10.2528/PIER24121703
References

1. Wu, Qingqing, Shuowen Zhang, Beixiong Zheng, Changsheng You, and Rui Zhang, "Intelligent reflecting surface-aided wireless communications: A tutorial," IEEE Transactions on Communications, Vol. 69, No. 5, 3313-3351, 2021.

2. Yuan, Yifei, Yuhong Huang, and Fa-Long Luo, Metasurfaces for Wireless Communications: Designs and Implementations, 1st Ed., CRC Press, 2024.
doi:10.1201/9781003381259

3. Khawaja, Wahab, Ozgur Ozdemir, Yavuz Yapici, Fatih Erden, and Ismail Guvenc, "Coverage enhancement for NLOS mmWave links using passive reflectors," IEEE Open Journal of the Communications Society, Vol. 1, 263-281, 2020.

4. Wireless InSite® 3D Wireless Propagation Software, https://www.remcom.com/wireless-insite-propagation-software.

5. Gu, Qi, Dan Wu, Xin Su, Hanning Wang, Jingyuan Cui, and Yifei Yuan, "System-level simulation of reconfigurable intelligent surface assisted wireless communications system," ArXiv Preprint ArXiv:2206.14777, 2022.

6. Özdogan, Özgecan, Emil Björnson, and Erik G. Larsson, "Intelligent reflecting surfaces: Physics, propagation, and pathloss modeling," IEEE Wireless Communications Letters, Vol. 9, No. 5, 581-585, 2019.

7. Chia, Tse-Tong, "Prediction of electromagnetic scattering from metasurfaces," 2016 10th European Conference on Antennas and Propagation (EuCAP), 1-5, Davos, Switzerland, Apr. 2016.

8. Díaz-Rubio, Ana and Sergei A. Tretyakov, "Macroscopic modeling of anomalously reflecting metasurfaces: Angular response and far-field scattering," IEEE Transactions on Antennas and Propagation, Vol. 69, No. 10, 6560-6571, 2021.

9. Wang, Xuchen, Ana Díaz-Rubio, Viktar S. Asadchy, Grigorii Ptitcyn, Andrey A. Generalov, Juha Ala-Laurinaho, and Sergei A. Tretyakov, "Extreme asymmetry in metasurfaces via evanescent fields engineering: Angular-asymmetric absorption," Physical Review Letters, Vol. 121, No. 25, 256802, 2018.

10. Díaz-Rubio, Ana, Sergei Kosulnikov, and Sergei A. Tretyakov, "On the integration of reconfigurable intelligent surfaces in real-world environments: A convenient approach for estimation reflection and transmission," IEEE Antennas and Propagation Magazine, Vol. 64, No. 4, 85-95, 2022.

11. Liu, Yuanzhi, Ziqi Liu, Sean V. Hum, and Costas D. Sarris, "An equivalence principle-based hybrid method for propagation modeling in radio environments with reconfigurable intelligent surfaces," IEEE Transactions on Antennas and Propagation, Vol. 72, No. 7, 5961-5973, Jul. 2024.

12. 3GPP ETSI TR 138.901, "Study on channel model for frequencies from 0.5 to 100 GHz," Jan. 2020.

13. Vitucci, Enrico M., Mattia Fabiani, and Vittorio Degli-Esposti, "Use of a realistic ray-based model for the evaluation of indoor RF coverage solutions using reconfigurable intelligent surfaces," Electronics, Vol. 12, No. 5, 1173, 2023.

14. Liu, Yuanzhi and Costas D. Sarris, "Efficient computation of scattered fields from reconfigurable intelligent surfaces for propagation modeling," IEEE Transactions on Antennas and Propagation, Vol. 72, No. 2, 1817-1826, Feb. 2024.

15. Nayeri, Payam, Atef Z. Elsherbeni, and Fan Yang, "Radiation analysis approaches for reflectarray antennas [antenna designer's notebook]," IEEE Antennas and Propagation Magazine, Vol. 55, No. 1, 127-134, Feb. 2013.

16. Jaeckel, S., L. Raschkowski, L. Thiele, et al. "Quasi deterministic radio channel generator user manual and documentation," Fraunhofer Heinrich Hertz Institute Wireless Communications and Networks, 1-4, 2016.

17. Sun, Shu, "Channel modeling and multi-cell hybrid beamforming for fifth-generation millimeter-wave wireless communications," Ph.D. dissertation, New York University, New York, USA, 2018.

18. Weiler, Richard J., Michael Peter, Wilhelm Keusgen, Alexander Maltsev, Ingolf Karls, Andrey Pudeyev, Ilya Bolotin, Isabelle Siaud, and Anne-Marie Ulmer-Moll, "Quasi-deterministic millimeter-wave channel models in MiWEBA," EURASIP Journal on Wireless Communications and Networking, Vol. 2016, 1-16, Mar. 2016.

19. Liu, Lingfeng, Claude Oestges, Juho Poutanen, Katsuyuki Haneda, Pertti Vainikainen, François Quitin, Fredrik Tufvesson, and Philippe De Doncker, "The COST 2100 MIMO channel model," IEEE Wireless Communications, Vol. 19, No. 6, 92-99, 2012.

20. Orfanidis, Sophocles J., Electromagnetic Waves and Antennas, Rutgers University, NJ, USA, 2003.

21. Amiot, Nicolas, Mohamed Laaraiedh, and Bernard Uguen, "Pylayers: An open source dynamic simulator for indoor propagation and localization," 2013 IEEE International Conference on Communications Workshops (ICC), 84-88, Budapest, Hungary, Jun. 2013.

22. Amiot, Nicolas, "Design of simulation platform joigning site specific radio propagation and human mobility for localization applications," Ph.D. dissertation, University of Rennes, Rennes, France, 2013.

23. PyLayers GitHub repository, https://github.com/pylayers/pylayers.

24. Hoydis, Jakob, Sebastian Cammerer, Fayçal Ait Aoudia, Avinash Vem, Nikolaus Binder, Guillermo Marcus, and Alexander Keller, "Sionna: An open-source library for next-generation physical layer research," ArXiv Preprint ArXiv:2203.11854, 2022.

25. Aubert, Louis-Marie, Bernard Uguen, and Friedman Tchoffo Talom, "Deterministic simulation of MIMO–UWB transmission channel," Comptes Rendus Physique, Vol. 7, No. 7, 751-761, 2006.

26. Balanis, Constantine A., Advanced Engineering Electromagnetics, John Wiley & Sons, 2012.

27. Ansys HFSS, 3D Electromagnetic Field Simulator for RF and Wireless Design, https://www.ansys.com/products/electronics/ansys-hfss.

28. Tretyakov, Sergei, Analytical Modeling in Applied Electromagnetics, Artech House, 2003.

29. Oskooi, Ardavan F., David Roundy, Mihai Ibanescu, Peter Bermel, J. D. Joannopoulos, and Steven G. Johnson, "MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method," Computer Physics Communications, Vol. 181, No. 3, 687-702, 2010.

30. Kashyap, Bharath G., Panagiotis C. Theofanopoulos, Yiran Cui, and Georgios C. Trichopoulos, "Mitigating quantization lobes in mmwave low-bit reconfigurable reflective surfaces," IEEE Open Journal of Antennas and Propagation, Vol. 1, 604-614, 2020.

31. Hwang, Ruey-Bing, Periodic Structures: Mode-Matching Approach and Applications in Electromagnetic Engineering, John Wiley & Sons, 2012.
doi:10.1002/9781118188040