Vol. 181
Latest Volume
All Volumes
PIER 181 [2024] PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2024-12-25
Dual-Color Self-Synchronized Cross-Phase-Modulation Mode-Locked Fiber Laser for Coherent Anti-Stokes Raman Scattering Detection
By
Progress In Electromagnetics Research, Vol. 181, 81-87, 2024
Abstract
We present a self-synchronized dual-color cross-phase-modulation mode-locked (XPM ML) fiber laser with excellent wavelength tunability and signal-to-noise ratio for coherent anti-Stokes Raman scattering (CARS) detection. Cross-phase-modulation gives rise to self-synchronization between the two-color lasers, which enables rapid wavelengths scanning as time delay of the master laser cavity is electrically adjusted. The synchronized cavity without any mode-locking elements helps to improve the mode-locking stability and resistance to environmental interference. The pump (780 nm, 18.5 ps) and Stokes (881.1-899.4 nm, 1.5 ps) pulses obtained by second harmonic generation (SHG) are then sent to a focusing lens for CARS detection for scanning Raman shift of 1470-1701 cm-1). As an example of analyte, rhodium-bisphosphine complex catalyst samples are detected. This highly stable and fast-tunable two-color XPM synchronized mode-locked laser architecture has the potential for arbitrary waveband extension would greatly improve the possibility of coherent Raman scattering imaging technology from the laboratory to practical applications in e.g. biomedical detection.
Citation
Pu Sun, Haolin Yang, Xiaer Zou, Ke Feng, Ruili Zhang, and Sailing He, "Dual-Color Self-Synchronized Cross-Phase-Modulation Mode-Locked Fiber Laser for Coherent Anti-Stokes Raman Scattering Detection," Progress In Electromagnetics Research, Vol. 181, 81-87, 2024.
doi:10.2528/PIER24121102
References

1. Zumbusch, Andreas, Gary R. Holtom, and X. Sunney Xie, "Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering," Physical Review Letters, Vol. 82, No. 20, 4142, May 1999.
doi:10.1103/PhysRevLett.82.4142

2. Wei, Lu, Zhixing Chen, Lixue Shi, Rong Long, Andrew V. Anzalone, Luyuan Zhang, Fanghao Hu, Rafael Yuste, Virginia W. Cornish, and Wei Min, "Super-multiplex vibrational imaging," Nature, Vol. 544, No. 7651, 465-470, Apr. 2017.
doi:10.1038/nature22051

3. Virga, A., C. Ferrante, G. Batignani, D. De Fazio, A. D. G. Nunn, A. C. Ferrari, G. Cerullo, and T. Scopigno, "Coherent anti-Stokes Raman spectroscopy of single and multi-layer graphene," Nature Communications, Vol. 10, No. 1, 3658, Aug. 2019.
doi:10.1038/s41467-019-11165-1

4. Li, Haozheng, Yong Cheng, Huajun Tang, Yali Bi, Yage Chen, Guang Yang, Shoujing Guo, Sidan Tian, Jiangshan Liao, Xiaohua Lv, Shaoqun Zeng, Mingqiang Zhu, Chenjie Xu, Ji-Xin Cheng, and Ping Wang, "Imaging chemical kinetics of radical polymerization with an ultrafast coherent Raman microscope," Advanced Science, Vol. 7, No. 10, 1903644, Mar. 2020.
doi:10.1002/advs.201903644

5. Linnenbank, Heiko, Tobias Steinle, Florian Mörz, Moritz Flöss, Han Cui, Andrew Glidle, and Harald Giessen, "Robust and rapidly tunable light source for SRS/CARS microscopy with low-intensity noise," Advanced Photonics, Vol. 1, No. 5, 055001-055001, Sep. 2019.
doi:10.1117/1.AP.1.5.055001

6. Li, Yanping, Binglin Shen, Shaowei Li, Yihua Zhao, Junle Qu, and Liwei Liu, "Review of stimulated Raman scattering microscopy techniques and applications in the biosciences," Advanced Biology, Vol. 5, No. 1, 2000184, Jan. 2021.
doi:10.1002/adbi.202000184

7. Orringer, Daniel A., Balaji Pandian, Yashar S. Niknafs, Todd C. Hollon, Julianne Boyle, Spencer Lewis, Mia Garrard, Shawn L. Hervey-Jumper, Hugh J. L. Garton, Cormac O. Maher, et al., "Rapid intraoperative histology of unprocessed surgical specimens via fibre-laser-based stimulated Raman scattering microscopy," Nature Biomedical Engineering, Vol. 1, No. 2, 0027, Feb. 2017.
doi:10.1038/s41551-016-0027

8. Freudiger, Christian W., Wenlong Yang, Gary R. Holtom, Nasser Peyghambarian, X. Sunney Xie, and Khanh Q. Kieu, "Stimulated Raman scattering microscopy with a robust fibre laser source," Nature Photonics, Vol. 8, No. 2, 153-159, Jan. 2014.
doi:10.1038/nphoton.2013.360

9. Mashiko, Yutaka, Eisuke Fujita, and Masaki Tokurakawa, "Tunable noise-like pulse generation in mode-locked Tm fiber laser with a SESAM," Optics Express, Vol. 24, No. 23, 26515-26520, Nov. 2016.
doi:10.1364/OE.24.026515

10. Yang, Kangwen, Shikai Zheng, Yuxing Wu, Pengbo Ye, Kun Huang, Qiang Hao, and Heping Zeng, "Low-repetition-rate all-fiber integrated optical parametric oscillator for coherent anti-Stokes Raman spectroscopy," Optics Express, Vol. 26, No. 13, 17519-17528, Jun. 2018.
doi:10.1364/OE.26.017519

11. Lefrancois, Simon, Dan Fu, Gary R. Holtom, Lingjie Kong, William J. Wadsworth, Patrick Schneider, Robert Herda, Armin Zach, X. Sunney Xie, and Frank W. Wise, "Fiber four-wave mixing source for coherent anti-Stokes Raman scattering microscopy," Optics Letters, Vol. 37, No. 10, 1652, May 2012.
doi:10.1364/OL.37.001652

12. Gottschall, Thomas, Tobias Meyer, Michael Schmitt, Jürgen Popp, Jens Limpert, and Andreas Tünnermann, "Four-wave-mixing-based optical parametric oscillator delivering energetic, tunable, chirped femtosecond pulses for non-linear biomedical applications," Optics Express, Vol. 23, No. 18, 23968-23977, Sep. 2015.
doi:10.1364/OE.23.023968

13. Andresen, Esben Ravn, Carsten Krogh Nielsen, Jan Thøgersen, and Søren Rud Keiding, "Fiber laser-based light source for coherent anti-Stokes Raman scattering microspectroscopy," Optics Express, Vol. 15, No. 8, 4848-4856, Apr. 2007.
doi:10.1364/OE.15.004848

14. Xie, Ruxin, Jue Su, Eric C. Rentchler, Ziyan Zhang, Carey K. Johnson, Honglian Shi, and Rongqing Hui, "Multi-modal label-free imaging based on a femtosecond fiber laser," Biomedical Optics Express, Vol. 5, No. 7, 2390-2396, Jun. 2014.
doi:10.1364/BOE.5.002390

15. Zhang, Yongning, Junfeng Jiang, Kun Liu, Shuang Wang, Zhe Ma, and Tiegen Liu, "Composite wavelength tuning for precision Raman resonance in soliton self-frequency shift-based coherent anti-Stokes Raman scattering," Applied Physics Express, Vol. 13, No. 9, 092002, Aug. 2020.
doi:10.35848/1882-0786/abaf95

16. Selm, Romedi, Martin Winterhalder, Andreas Zumbusch, Günther Krauss, Tobias Hanke, Alexander Sell, and Alfred Leitenstorfer, "Ultrabroadband background-free coherent anti-Stokes Raman scattering microscopy based on a compact Er: Fiber laser system," Optics Letters, Vol. 35, No. 19, 3282-3284, Oct. 2010.
doi:10.1364/OL.35.003282

17. Tu, Haohua, Yuan Liu, Dmitry Turchinovich, Marina Marjanovic, Jens K. Lyngsø, Jesper Lægsgaard, Eric J. Chaney, Youbo Zhao, Sixian You, William L. Wilson, Bingwei Xu, Marcos Dantus, and Stephen A. Boppart, "Stain-free histopathology by programmable supercontinuum pulses," Nature Photonics, Vol. 10, No. 8, 534-540, Aug. 2016.
doi:10.1038/nphoton.2016.94

18. Ozeki, Yasuyuki, Wataru Umemura, Kazuhiko Sumimura, Norihiko Nishizawa, Kiichi Fukui, and Kazuyoshi Itoh, "Stimulated Raman hyperspectral imaging based on spectral filtering of broadband fiber laser pulses," Optics Letters, Vol. 37, No. 3, 431-433, Feb. 2012.
doi:10.1364/OL.37.000431

19. Yang, Kangwen, Lizhong Huo, Jianpeng Ao, Qingting Wang, Qiang Hao, Ming Yan, Kun Huang, Minbiao Ji, and Heping Zeng, "Fast tunable all-polarization-maintaining supercontinuum fiber laser for CARS microscopy," Applied Physics Express, Vol. 14, No. 6, 062004, May 2021.
doi:10.35848/1882-0786/ac0197

20. Greer, E. J. and K. Smith, "All-optical FM mode-locking of fibre laser," Electronics Letters, Vol. 28, No. 18, 1741-1743, Aug. 1992.
doi:10.1049/el:19921107

21. Wang, Zhenhao, Shukai Zheng, Fanlong Dong, Jiachen Wang, Linpeng Yu, Xing Luo, Peiguang Yan, Jinzhang Wang, Qitao Lue, Chunyu Guo, and Shuangchen Ruan, "Synchronously pumped mode-locked ultrafast ytterbium-doped fiber laser," Infrared Physics & Technology, Vol. 125, 104302, Sep. 2022.
doi:10.1016/j.infrared.2022.104302

22. Li, Yan, Kangjun Zhao, Bo Cao, Xiaosheng Xiao, and Changxi Yang, "Carbon nanotube-synchronized dual-color fiber laser for coherent anti-Stokes Raman scattering microscopy," Optics Letters, Vol. 45, No. 12, 3329-3332, Jun. 2020.
doi:10.1364/OL.393449

23. Kong, Cihang, Christian Pilger, Henning Hachmeister, Xiaoming Wei, Tom H. Cheung, Cora S. W. Lai, Nikki P. Lee, Kevin K. Tsia, Kenneth K. Y. Wong, and Thomas Huser, "High-contrast, fast chemical imaging by coherent Raman scattering using a self-synchronized two-colour fibre laser," Light: Science & Applications, Vol. 9, No. 1, 25, Feb. 2020.
doi:10.1038/s41377-020-0259-2

24. He, Ruoyu, Yongkui Xu, Lili Zhang, Shenghong Ma, Xu Wang, Dan Ye, and Minbiao Ji, "Dual-phase stimulated Raman scattering microscopy for real-time two-color imaging," Optica, Vol. 4, No. 1, 44-47, Jun. 2017.
doi:10.1364/OPTICA.4.000044

25. Walter, Angela, Wilm Schumacher, Thomas Bocklitz, Martin Reinicke, Petra Rösch, Erika Kothe, and Jürgen Popp, "From bulk to single-cell classification of the filamentous growing Streptomyces bacteria by means of Raman spectroscopy," Applied Spectroscopy, Vol. 65, No. 10, 1116-1125, Oct. 2011.
doi:10.1366/11-06329

26. Alexander, Jimmy, Arunkumar Subramanian, S. Jayaraman, and G. Ratinavel, "Raman spectroscopy for structural fingerprinting of bio-molecules," World Journal of Pharmaceutical Research, Vol. 10, No. 13, 150-167, Oct. 2021.
doi:10.20959/wjpr202113-21302

27. Potcoava, M. C., G. L. Futia, J. Aughenbaugh, I. R. Schlaepfer, and E. A. Gibson, "Raman and coherent anti-Stokes Raman scattering microscopy studies of changes in lipid content and composition in hormone-treated breast and prostate cancer cells," Journal of Biomedical Optics, Vol. 19, No. 11, 111605, Jun. 2014.
doi:doi.org/10.1117/1.JBO.19.11.111605

28. Thomas Jr., George J., "Raman spectroscopy of protein and nucleic acid assemblies," Annual Review of Biophysics and Biomolecular Structure, Vol. 28, No. 1, 1-27, 1999.
doi:10.1146/annurev.biophys.28.1.1

29. Krafft, Christoph, "Raman spectroscopy of proteins and nucleic acids: From amino acids and nucleotides to large assemblies," Encyclopedia of Analytical Chemistry: Applications, Theory and Instrumentation, 1-15, Sep. 2018.
doi:10.1002/9780470027318.a9611

30. Zhang, Shuyan, Yi Qi, Sonia Peng Hwee Tan, Renzhe Bi, and Malini Olivo, "Molecular fingerprint detection using Raman and infrared spectroscopy technologies for cancer detection: A progress review," Biosensors, Vol. 13, No. 5, 557, May 2023.
doi:10.3390/bios13050557

31. Lee, Young Jong, Doyoung Moon, Kalman B. Migler, and Marcus T. Cicerone, "Quantitative image analysis of broadband CARS hyperspectral images of polymer blends," Analytical Chemistry, Vol. 83, No. 7, 2733-2739, Mar. 2011.
doi:10.1021/ac103351q

32. Lee, Young Jong, Chad R. Snyder, Aaron M. Forster, Marcus T. Cicerone, and Wen-li Wu, "Imaging the molecular structure of polyethylene blends with broadband coherent Raman microscopy," ACS Macro Letters, Vol. 1, No. 11, 1347-1351, Nov. 2012.
doi:10.1021/mz300546e

33. Ma, H., X. Han, C. Zhang, X. Zhang, X. Shi, and J. Ma, "The study of sulfonamide antibiotics in fish based on surface-enhanced Raman spectroscopy technology," Acta Laser Biology Sinica, Vol. 23, No. 6, 560-565, 2014.

34. Luther, Sebastian Klaus, Julian Jonathan Schuster, Alfred Leipertz, and Andreas Braeuer, "Non-invasive quantification of phase equilibria of ternary mixtures composed of carbon dioxide, organic solvent and water," The Journal of Supercritical Fluids, Vol. 84, 146-154, Dec. 2013.
doi:10.1016/j.supflu.2013.09.012

35. Paul, Andrea, Klas Meyer, Jan-Paul Ruiken, Markus Illner, David-Nicolas Müller, Erik Esche, Günther Wozny, Frank Westad, and Michael Maiwald, "Process spectroscopy in microemulsions --- Raman spectroscopy for online monitoring of a homogeneous hydroformylation process," Measurement Science and Technology, Vol. 28, No. 3, 035502, Jan. 2017.
doi:10.1088/1361-6501/aa54f0

36. Agger, Søren Dyøe and Jørn Hedegaard Povlsen, "Emission and absorption cross section of thulium doped silica fibers," Optics Express, Vol. 14, No. 1, 50-57, Jan. 2006.
doi:10.1364/OPEX.14.000050

37. Yang, Haolin and Sailing He, "Widely tunable 1.7 μm vector dissipative soliton all-fiber thulium laser," Journal of Lightwave Technology, Vol. 42, No. 1, 347-353, Jan. 2024.
doi:10.1109/JLT.2023.3313254

38. Wegmüller, M., W. Hodel, and H. P. Weber, "Fiber laser mode-locking by pump pulse induced cross-phase modulation: A numerical analysis," Optics Communications, Vol. 115, No. 5-6, 498-504, Apr. 1995.
doi:10.1016/0030-4018(95)00016-2

39. Rusu, Matei, Robert Herda, and Oleg G. Okhotnikov, "Passively synchronized two-color mode-locked fiber system based on master-slave lasers geometry," Optics Express, Vol. 12, No. 20, 4719-4724, Oct. 2004.
doi:10.1364/OPEX.12.004719

40. Hsiang, Wei-Wei, Chia-Hao Chang, Chien-Po Cheng, and Yinchieh Lai, "Passive synchronization between a self-similar pulse and a bound-soliton bunch in a two-color mode-locked fiber laser," Optics Letters, Vol. 34, No. 13, 1967-1969, Jul. 2009.
doi:10.1364/OL.34.001967

41. He, Hongsen, Meng Zhou, Tian Qiao, Hei Ming Lai, Qiao Ran, Yu-Xuan Ren, Ho Ko, Chaogu Zheng, Kevin K. Tsia, and Kenneth K. Y. Wong, "890-nm-excited SHG and fluorescence imaging enabled by an all-fiber mode-locked laser," Optics Letters, Vol. 47, No. 11, 2710-2713, Jun. 2022.
doi:10.1364/OL.455081