Vol. 181
Latest Volume
All Volumes
PIER 181 [2024] PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2024-12-20
Reflectionless Refraction via One-Dimensional Ghost Polaritons in Planar Junctions of Hyperbolic Metasurfaces
By
Progress In Electromagnetics Research, Vol. 181, 1-8, 2024
Abstract
Polaritons, part-light−part-matter waves, enable the control of light at the subwavelength scale. Interfacial behaviors play a critical role in polariton manipulation, with negative refraction showing promise for high-resolution focusing. However, reflections pose a substantial challenge, especially in applications where backscattering is unwanted. To address this issue, we propose a structure composed of planar junctions of metasurfaces, each supporting in-plane hyperbolic polaritons with misaligned optical axes. We demonstrate that when the asymptote of the incident hyperbolic isofrequency contours (IFCs) aligns with the interface normal, the reflected waves transform into highly lossy one-dimensional ghost polaritons (HL-1DGPs), channeling energy near the interface. The refracted waves also convert into HL-1DGPs when the outgoing IFC asymptote aligns with the interface normal. Leveraging these phenomena, we design polaritonic lenses and absorbers with greatly reduced reflection. These insights into the interfacial behaviors of hyperbolic polaritons under symmetry breaking have implications for creating polaritonic elements beyond the diffraction limit.
Supplementary Information
Citation
Zhiwei He, Huaping Wang, Zhenyang Cui, Sihao Xia, Xingyu Tang, Bin Zheng, Xiao Lin, Lian Shen, Hongsheng Chen, and Yingjie Wu, "Reflectionless Refraction via One-Dimensional Ghost Polaritons in Planar Junctions of Hyperbolic Metasurfaces," Progress In Electromagnetics Research, Vol. 181, 1-8, 2024.
doi:10.2528/PIER24120305
References

1. Basov, D. N., M. M. Fogler, and F. J. Garcia de Abajo, "Polaritons in van der Waals materials," Science, Vol. 354, No. 6309, aaag1992, 2016.
doi:10.1126/science.aag1992

2. Low, Tony, Andrey Chaves, Joshua D. Caldwell, Anshuman Kumar, Nicholas X. Fang, Phaedon Avouris, Tony F. Heinz, Francisco Guinea, Luis Martin-Moreno, and Frank Koppens, "Polaritons in layered two-dimensional materials," Nature Materials, Vol. 16, No. 2, 182-194, 2017.

3. Zhang, Qing, Guangwei Hu, Weiliang Ma, Peining Li, Alex Krasnok, Rainer Hillenbrand, Andrea Alù, and Cheng-Wei Qiu, "Interface nano-optics with van der Waals polaritons," Nature, Vol. 597, No. 7875, 187-195, 2021.
doi:10.1038/s41586-021-03581-5

4. Wang, Hongwei, Anshuman Kumar, Siyuan Dai, Xiao Lin, Zubin Jacob, Sang-Hyun Oh, Vinod Menon, Evgenii Narimanov, Young Duck Kim, Jian-Ping Wang, P. Avouris, L. M. Moreno, J. Caldwell, and T. Low, "Planar hyperbolic polaritons in 2D van der Waals materials," Nature Communications, Vol. 15, No. 1, 69, 2024.

5. Wu, Yingjie, Jiahua Duan, Weiliang Ma, Qingdong Ou, Peining Li, Pablo Alonso-González, Joshua D. Caldwell, and Qiaoliang Bao, "Manipulating polaritons at the extreme scale in van der Waals materials," Nature Reviews Physics, Vol. 4, No. 9, 578-594, 2022.

6. Galiffi, Emanuele, Giulia Carini, Xiang Ni, Gonzalo Álvarez-Pérez, Simon Yves, Enrico Maria Renzi, Ryan Nolen, Sören Wasserroth, Martin Wolf, Pablo Alonso-Gonzalez, A. Paarmann, and A. Alù, "Extreme light confinement and control in low-symmetry phonon-polaritonic crystals," Nature Reviews Materials, Vol. 9, No. 1, 9-28, 2024.

7. Ono, Masaaki, Masanori Hata, Masato Tsunekawa, Kengo Nozaki, Hisashi Sumikura, Hisashi Chiba, and Masaya Notomi, "Ultrafast and energy-efficient all-optical switching with graphene-loaded deep-subwavelength plasmonic waveguides," Nature Photonics, Vol. 14, No. 1, 37-43, 2020.

8. Dolado, Irene, Francisco Javier Alfaro-Mozaz, Peining Li, Elizaveta Nikulina, Andrei Bylinkin, Song Liu, James H. Edgar, Felix Casanova, Luis E. Hueso, Pablo Alonso-González, S. Velez, A. Y. Nikitin, and R. Hillenbrand, "Nanoscale guiding of infrared light with hyperbolic volume and surface polaritons in van der Waals material ribbons," Advanced Materials, Vol. 32, No. 9, e1906530, 2020.

9. He, Mingze, Sami I. Halimi, Thomas G. Folland, Sai S. Sunku, Song Liu, James H. Edgar, D. N. Basov, Sharon M. Weiss, and Joshua D. Caldwell, "Guided mid-IR and near-IR light within a hybrid hyperbolic-material/silicon waveguide heterostructure," Advanced Materials, Vol. 33, No. 11, e2004305, 2021.

10. He, Mingze, Levi Hoogendoorn, Saurabh Dixit, Zhiliang Pan, Guanyu Lu, Katja Diaz-Granados, Deyu Li, and Joshua D. Caldwell, "Guided polaritons along the forbidden direction in MoO3 with geometrical confinement," Nano Letters, Vol. 23, No. 11, 5035-5041, 2023.

11. Yu, Shang-Jie, Helen Yao, Guangwei Hu, Yue Jiang, Xiaolin Zheng, Shanhui Fan, Tony F. Heinz, and Jonathan A. Fan, "Hyperbolic polaritonic rulers based on van der Waals α-MoO3 waveguides and resonators," ACS Nano, Vol. 17, No. 22, 23057-23064, 2023.

12. Alonso-Gonzalez, P., A. Y. Nikitin, F. Golmar, et al., "Controlling graphene plasmons with resonant metal antennas and spatial conductivity patterns," Science, Vol. 344, No. 6190, 1369-1373, 2014.
doi:10.1126/science.1253202

13. Chaudhary, Kundan, Michele Tamagnone, Xinghui Yin, Christina M. Spägele, Stefano L. Oscurato, Jiahan Li, Christoph Persch, Ruoping Li, Noah A. Rubin, Luis A. Jauregui, et al., "Polariton nanophotonics using phase-change materials," Nature Communications, Vol. 10, No. 1, 4487, 2019.

14. Zhao, Yongqian, Ge Li, Yuyu Yao, Jiancui Chen, Mengfei Xue, Lihong Bao, Kuijuan Jin, Chen Ge, and Jianing Chen, "Tunable heterostructural prism for planar polaritonic switch," Science Bulletin, Vol. 68, No. 16, 1757-1763, 2023.

15. Folland, Thomas G., Alireza Fali, Samuel T. White, Joseph R. Matson, Song Liu, Neda A. Aghamiri, James H. Edgar, R. F. Haglund Jr., Yohannes Abate, and Joshua D. Caldwell, "Reconfigurable infrared hyperbolic metasurfaces using phase change materials," Nature Communications, Vol. 9, No. 1, 4371, 2018.

16. Duan, J., G. Álvarez-Pérez, A. I. F. Tresguerres-Mata, J. Taboada-Gutiérrez, K. V. Voronin, A. Bylinkin, B. Chang, S. Xiao, S. Liu, J. H. Edgar, J. I. Martín, V. S. Volkov, R. Hillenbrand, J. Martín-Sánchez, A. Y. Nikitin, and P. Alonso-González, "Planar refraction and lensing of highly confined polaritons in anisotropic media," Nature Communications, Vol. 12, No. 1, 4325, 2021.

17. Martín-Sánchez, J., J. Duan, J. Taboada-Gutiérrez, et al., "Focusing of in-plane hyperbolic polaritons in van der Waals crystals with tailored infrared nanoantennas," Science Advances, Vol. 7, No. 41, eabj0127, 2021.

18. Zheng, Zebo, Jingyao Jiang, Ningsheng Xu, Ximiao Wang, Wuchao Huang, Yanlin Ke, Shouren Zhang, Huanjun Chen, and Shaozhi Deng, "Controlling and focusing in-plane hyperbolic phonon polaritons in α-MoO3 with a curved plasmonic antenna," Advanced Materials, Vol. 34, No. 6, e2104164, 2022.

19. Qu, Yunpeng, Na Chen, Hanchao Teng, Hai Hu, Jianzhe Sun, Renwen Yu, Debo Hu, Mengfei Xue, Chi Li, Bin Wu, et al., "Tunable planar focusing based on hyperbolic phonon polaritons in α-MoO3," Advanced Materials, Vol. 34, No. 23, e2105590, 2022.

20. Ma, Lei, Anping Ge, Liaoxin Sun, Feng Liu, and Wei Lu, "Focusing of hyperbolic phonon polaritons by bent metal nanowires and their polarization dependence," ACS Photonics, Vol. 10, No. 6, 1841-1849, 2023.

21. Cui, Zhenyang, Sihao Xia, Lian Shen, Bin Zheng, Hongsheng Chen, and Yingjie Wu, "Polariton microfluidics for nonreciprocal dragging and reconfigurable shaping of polaritons," Nano Letters, Vol. 24, No. 4, 1360-1366, 2024.

22. Wu, Yingjie, Jingying Liu, Wenzhi Yu, Tan Zhang, Haoran Mu, Guangyuan Si, Zhenyang Cui, Shenghuang Lin, Bin Zheng, Cheng-Wei Qiu, Hongsheng Chen, and Qingdong Ou, "Monolithically structured van der Waals materials for volume-polariton refraction and focusing," ACS Nano, Vol. 18, No. 26, 17065-17074, 2024.

23. Ding, Fei, "A review of multifunctional optical gap-surface plasmon metasurfaces," Progress In Electromagnetics Research, Vol. 174, 55-73, 2022.
doi:10.2528/PIER22020308

24. Pendry, John Brian, "Negative refraction makes a perfect lens," Physical Review Letters, Vol. 85, No. 18, 3966, 2000.

25. Shin, Hocheol and Shanhui Fan, "All-angle negative refraction for surface plasmon waves using a metal-dielectric-metal structure," Physical Review Letters, Vol. 96, No. 7, 073907, 2006.

26. Liu, Yongmin, Guy Bartal, and Xiang Zhang, "All-angle negative refraction and imaging in a bulk medium made of metallic nanowires in the visible region," Optics Express, Vol. 16, No. 20, 15439-15448, 2008.

27. Lin, Xiao, Yi Yang, Nicholas Rivera, Josué J. López, Yichen Shen, Ido Kaminer, Hongsheng Chen, Baile Zhang, John D. Joannopoulos, and Marin Soljačić, "All-angle negative refraction of highly squeezed plasmon and phonon polaritons in graphene-boron nitride heterostructures," Proceedings of the National Academy of Sciences, Vol. 114, No. 26, 6717-6721, 2017.
doi:10.1073/pnas.1701830114

28. Jiang, Jing, Xiao Lin, and Baile Zhang, "Broadband negative refraction of highly squeezed hyperbolic polaritons in 2D materials," Research, Vol. 2018, 2532819, 2018.

29. Zhang, Qing, Zhou Zhen, Chengpu Liu, Deep Jariwala, and Xudong Cui, "Gate-tunable polariton superlens in 2D/3D heterostructures," Optics Express, Vol. 27, No. 13, 18628-18641, 2019.

30. Zhang, Qing, Zhou Zhen, Yongfei Yang, Gongwen Gan, Deep Jariwala, and Xudong Cui, "Negative refraction inspired polariton lens in van der Waals lateral heterojunctions," Applied Physics Letters, Vol. 114, No. 22, 221101, 2019.

31. Zhang, Tan, Chunqi Zheng, Zhi Ning Chen, and Cheng-Wei Qiu, "Negative reflection and negative refraction in biaxial van der Waals materials," Nano Letters, Vol. 22, No. 13, 5607-5614, 2022.

32. Liu, Ruey-Tarng and Chia-Chien Huang, "Interfacing differently oriented biaxial van der Waals crystals for negative refraction," Nanophotonics, Vol. 12, No. 21, 4063-4072, 2023.

33. Liu, Ruey-Tarng, Yan-Ze Wu, and Chia-Chien Huang, "Focusing of mid-infrared polaritons through patterned graphene on van der Waals crystals," Nanophotonics, Vol. 13, No. 15, 2753-2763, 2024.

34. Chen, Qiaolu, Yihao Yang, Li Zhang, Jialin Chen, Min Li, Xiao Lin, Rujiang Li, Zuojia Wang, Baile Zhang, and Hongsheng Chen, "Negative refraction of ultra-squeezed in-plane hyperbolic designer polaritons," Photonics Research, Vol. 9, No. 8, 1540-1549, 2021.

35. Hu, Hai, Na Chen, Hanchao Teng, Renwen Yu, Yunpeng Qu, Jianzhe Sun, Mengfei Xue, Debo Hu, Bin Wu, Chi Li, et al., "Doping-driven topological polaritons in graphene/α-MoO3 heterostructures," Nature Nanotechnology, Vol. 17, No. 9, 940-946, 2022.

36. Hu, Hai, Na Chen, Hanchao Teng, Renwen Yu, Mengfei Xue, Ke Chen, Yuchuan Xiao, Yunpeng Qu, Debo Hu, Jianing Chen, et al., "Gate-tunable negative refraction of mid-infrared polaritons," Science, Vol. 379, No. 6632, 558-561, 2023.
doi:10.1126/science.adf1251

37. Sternbach, A. J., S. L. Moore, Andrey Rikhter, Shuai Zhang, Ran Jing, Yinming Shao, B. S. Y. Kim, Suheng Xu, Song Liu, J. H. Edgar, et al., "Negative refraction in hyperbolic hetero-bicrystals," Science, Vol. 379, No. 6632, 555-557, 2023.
doi:10.1126/science.adf1065

38. He, Hailong, Chunyin Qiu, Liping Ye, Xiangxi Cai, Xiying Fan, Manzhu Ke, Fan Zhang, and Zhengyou Liu, "Topological negative refraction of surface acoustic waves in a Weyl phononic crystal," Nature, Vol. 560, No. 7716, 61-64, 2018.
doi:10.1038/s41586-018-0367-9

39. Liu, Yachao, Guo Ping Wang, John B. Pendry, and Shuang Zhang, "All-angle reflectionless negative refraction with ideal photonic Weyl metamaterials," Light: Science & Applications, Vol. 11, No. 1, 276, 2022.
doi:10.1038/s41586-022-04820-z

40. Yu, Zhong, Shen Lin-Fang, Ran Li-Xin, Chen Xu-Dong, Liisi Jylhä, Tomasz M. Grzegorczyk, and Jin Au Kong, "Reflection and refraction on the boundary of a left-handed material with a hyperbolic dispersion relation," Chinese Physics Letters, Vol. 23, No. 5, 1296-1298, 2006.

41. Guo, Zhiwei, Haitao Jiang, and Hong Chen, "Abnormal wave propagation in tilted linear-crossing metamaterials," Advanced Photonics Research, Vol. 2, No. 1, 2000071, 2021.

42. Deriy, Ilya, Kseniia Lezhennikova, Stanislav Glybovsky, Ivan Iorsh, Oleh Yermakov, Mingzhao Song, Redha Abdeddaim, Stefan Enoch, Pavel Belov, and Andrey Bogdanov, "Anomalous reflection from hyperbolic media," ArXiv Preprint ArXiv:2308.10495, 2023.

43. Voronin, Kirill V., Gonzalo Álvarez-Pérez, Christian Lanza, Pablo Alonso-González, and Alexey Y. Nikitin, "Fundamentals of polaritons in strongly anisotropic thin crystal layers," ACS Photonics, Vol. 11, No. 2, 550-560, 2024.

44. Fang, Anan, Thomas Koschny, and Costas M. Soukoulis, "Optical anisotropic metamaterials: Negative refraction and focusing," Physical Review B, Vol. 79, No. 24, 245127, 2009.

45. Lezec, Henri J., Jennifer A. Dionne, and Harry A. Atwater, "Negative refraction at visible frequencies," Science, Vol. 316, No. 5823, 430-432, 2007.
doi:10.1126/science.1139266

46. Valentine, Jason, Shuang Zhang, Thomas Zentgraf, Erick Ulin-Avila, Dentcho A. Genov, Guy Bartal, and Xiang Zhang, "Three-dimensional optical metamaterial with a negative refractive index," Nature, Vol. 455, No. 7211, 376-379, 2008.
doi:10.1038/nature07247

47. Shah, Shahnawaz, Yuyu Jiang, Lu Song, Huaping Wang, and Lian Shen, "Optical axis-driven field discontinuity in a hyperbolic medium," Optics Letters, Vol. 45, No. 11, 3067-3070, 2020.

48. Gomez-Diaz, J. Sebastian, Mykhailo Tymchenko, and Andrea Alù, "Hyperbolic plasmons and topological transitions over uniaxial metasurfaces," Physical Review Letters, Vol. 114, No. 23, 233901, 2015.

49. Li, Peining, Irene Dolado, Francisco Javier Alfaro-Mozaz, et al., "Infrared hyperbolic metasurface based on nanostructured van der Waals materials," Science, Vol. 359, No. 6378, 892-896, 2018.
doi:10.1126/science.aaq1704

50. Li, Peining, Guangwei Hu, Irene Dolado, Mykhailo Tymchenko, Cheng-Wei Qiu, Francisco Javier Alfaro-Mozaz, Fèlix Casanova, Luis E. Hueso, Song Liu, James H. Edgar, et al., "Collective near-field coupling and nonlocal phenomena in infrared-phononic metasurfaces for nano-light canalization," Nature Communications, Vol. 11, No. 1, 3663, 2020.

51. Ma, Weiliang, Pablo Alonso-González, Shaojuan Li, Alexey Y. Nikitin, Jian Yuan, Javier Martín-Sánchez, Javier Taboada-Gutiérrez, Iban Amenabar, Peining Li, Saül Vélez, et al., "In-plane anisotropic and ultra-low-loss polaritons in a natural van der Waals crystal," Nature, Vol. 562, No. 7728, 557-562, 2018.
doi:10.1038/s41586-018-0618-9

52. Hu, Guangwei, Qingdong Ou, Guangyuan Si, Yingjie Wu, Jing Wu, Zhigao Dai, Alex Krasnok, Yarden Mazor, Qing Zhang, Qiaoliang Bao, Cheng-Wei Qiu, and Andrea Alù, "Topological polaritons and photonic magic angles in twisted α-MoO3 bilayers," Nature, Vol. 582, No. 7811, 209-213, 2020.
doi:10.1038/s41586-020-2359-9

53. Narimanov, Evgenii, "Ghost resonance in anisotropic materials: Negative refractive index and evanescent field enhancement in lossless media," Advanced Photonics, Vol. 1, No. 4, 046003, 2019.

54. Ma, Weiliang, Guangwei Hu, Debo Hu, Runkun Chen, Tian Sun, Xinliang Zhang, Qing Dai, Ying Zeng, Andrea Alù, Cheng-Wei Qiu, and Peining Li, "Ghost hyperbolic surface polaritons in bulk anisotropic crystals," Nature, Vol. 596, No. 7872, 362-366, 2021.
doi:10.1038/s41586-021-03755-1

55. Zhang, Qiang, Shao-Peng Hao, Hao-Yuan Song, Hong-Yan Peng, Shu-Fang Fu, and Xuan-Zhang Wang, "Unique ghost surface phonon polaritons in biaxially hyperbolic materials," Optics Express, Vol. 31, No. 26, 43821-43837, 2023.

56. Yan, Qizhi, Dunzhu Lu, Qiyu Chen, Xiao Luo, Ming Xu, Zhaowei Zhang, Xiaosheng Yang, Xinliang Zhang, and Peining Li, "Hybrid ghost phonon polaritons in thin-film heterostructure," Nano Letters, Vol. 24, No. 15, 4346-4353, 2024.

57. Moccia, Massimo, Giuseppe Castaldi, Andrea Alù, and Vincenzo Galdi, "Line waves in non-Hermitian metasurfaces," ACS Photonics, Vol. 7, No. 8, 2064-2072, 2020.

58. Moccia, Massimo, Giuseppe Castaldi, Andrea Alù, and Vincenzo Galdi, "Ghost line waves," ACS Photonics, Vol. 10, No. 6, 1866-1872, 2023.

59. Passler, Nikolai C., Xiang Ni, Guangwei Hu, Joseph R. Matson, Giulia Carini, Martin Wolf, Mathias Schubert, Andrea Alù, Joshua D. Caldwell, Thomas G. Folland, and Alexander Paarmann, "Hyperbolic shear polaritons in low-symmetry crystals," Nature, Vol. 602, No. 7898, 595-600, 2022.
doi:10.1038/s41586-021-04328-y

60. Hu, Guangwei, Weiliang Ma, Debo Hu, Jing Wu, Chunqi Zheng, Kaipeng Liu, Xudong Zhang, Xiang Ni, Jianing Chen, Xinliang Zhang, et al., "Real-space nanoimaging of hyperbolic shear polaritons in a monoclinic crystal," Nature Nanotechnology, Vol. 18, No. 1, 64-70, 2023.

61. Correas-Serrano, Diego, Andrea Alù, and J. Sebastian Gomez-Diaz, "Plasmon canalization and tunneling over anisotropic metasurfaces," Physical Review B, Vol. 96, No. 7, 075436, 2017.

62. Xing, Qiaoxia, Jiasheng Zhang, Yuqiang Fang, Chaoyu Song, Tuoyu Zhao, Yanlin Mou, Chong Wang, Junwei Ma, Yuangang Xie, Shenyang Huang, et al., "Tunable anisotropic van der Waals films of 2M-WS2 for plasmon canalization," Nature Communications, Vol. 15, No. 1, 2623, 2024.

63. Hu, Guangwei, Alex Krasnok, Yarden Mazor, Cheng-Wei Qiu, and Andrea Alu, "Moiré hyperbolic metasurfaces," Nano Letters, Vol. 20, No. 5, 3217-3224, 2020.

64. Zheng, Zebo, Ningsheng Xu, Stefano L. Oscurato, Michele Tamagnone, Fengsheng Sun, Yinzhu Jiang, Yanlin Ke, Jianing Chen, Wuchao Huang, William L. Wilson, et al., "A mid-infrared biaxial hyperbolic van der Waals crystal," Science Advances, Vol. 5, No. 5, eaav8690, 2019.

65. Yao, Dayue, Pei Hang He, Haochi Zhang, Jiawen Zhu, Mingzhe Hu, and Tie-Jun Cui, "Miniaturized photonic and microwave integrated circuits based on surface plasmon polaritons," Progress In Electromagnetics Research, Vol. 175, 105-125, 2022.
doi:10.2528/PIER22060501