submit Submit login
Vol. 124
Latest Volume
All Volumes
PIERL 124 [2025] PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2025-01-20
Credibility Assessment of EMC Uncertainty Analysis Based on Failure Rate
By
Progress In Electromagnetics Research Letters, Vol. 124, 55-61, 2025
Abstract
Uncertainty analysis has been widely used in electromagnetic compatibility (EMC) simulation. However, a comprehensive credibility assessment system for it has yet to be established. In this article, the concepts of failure domain and failure rate are introduced from the perspective of the practical application of uncertainty analysis methods. The study aims to assess the reliability of uncertainty analysis method from the perspective of system failure, providing a theoretical basis for guiding practical electromagnetic compatibility design through uncertainty analysis.
Citation
Shenghang Huo, Zhengyu Xue, Yuhan Zhou, Jinming Yao, and Jinjun Bai, "Credibility Assessment of EMC Uncertainty Analysis Based on Failure Rate," Progress In Electromagnetics Research Letters, Vol. 124, 55-61, 2025.
doi:10.2528/PIERL24112906
References

1. IEEE Standard Association, "IEEE Standard for Validation of Computational Electromagnetics Computer Modeling and Simulations," IEEE Std. 1597.1-2008, 1-41, 2008.

2. IEEE Standard Association, "IEEE Recommended Practice for Validation of Computational Electromagnetics Computer Modeling and Simulations," IEEE Std.1597.2-2010, 1-124, 2011.

3. Orlandi, A., G. Antonini, C. Polisini, A. Duffy, and H. Sasse, "Progress in the development of a 2D feature selective validation (FSV) method," 2008 IEEE International Symposium on Electromagnetic Compatibility, 1-6, Detroit, MI, USA, Aug. 2008.

4. Zhang, Gang, Alistair P. Duffy, Hugh Sasse, Lixin Wang, and Ricardo Jauregui, "Improvement in the definition of ODM for FSV," IEEE Transactions on Electromagnetic Compatibility, Vol. 55, No. 4, 773-779, Aug. 2013.

5. Zhang, Gang, Alistair P. Duffy, Antonio Orlandi, Danilo Di Febo, Lixin Wang, and Hugh Sasse, "Comparison of data with multiple degrees of freedom utilizing the feature selective validation method," IEEE Transactions on Electromagnetic Compatibility, Vol. 58, No. 3, 784-791, Jun. 2016.

6. IEEE Standard Association, "IEEE Standard for Validation of Computational Electromagnetics Computer Modeling and Simulations," IEEE Std. 1597.1-2022, 1-52, 2022.

7. Bai, Jinjun, Yixuan Wan, Ming Li, Gang Zhang, and Xin He, "Reduction of random variables in EMC uncertainty simulation model," Applied Computational Electromagnetics Society Journal (ACES), Vol. 37, No. 9, 941-947, Sep. 2022.

8. Tan, Tianhong, Tao Jiang, Haolin Jiang, Tianhao Wang, and Mingjuan Cai, "Uncertainty quantification method of crosstalk involving braided-shielded cable," Applied Computational Electromagnetics Society Journal (ACES), Vol. 38, No. 1, 28-35, Jan. 2023.

9. Jauregui, Ricardo, Marc Aragon, and Ferran Silva, "The role of uncertainty in the feature selective validation (FSV) method," IEEE Transactions on Electromagnetic Compatibility, Vol. 55, No. 1, 217-220, Feb. 2013.

10. Ferson, Scott, William L. Oberkampf, and Lev Ginzburg, "Model validation and predictive capability for the thermal challenge problem," Computer Methods in Applied Mechanics and Engineering, Vol. 197, No. 29-32, 2408-2430, May 2008.

11. Bai, Jinjun, Lixin Wang, Di Wang, Alistair P. Duffy, and Gang Zhang, "Validity evaluation of the uncertain EMC simulation results," IEEE Transactions on Electromagnetic Compatibility, Vol. 59, No. 3, 797-804, Jun. 2017.

12. Bai, Jinjun, Gang Zhang, Di Wang, Alistair P. Duffy, and Lixin Wang, "Performance comparison of the SGM and the SCM in EMC simulation," IEEE Transactions on Electromagnetic Compatibility, Vol. 58, No. 6, 1739-1746, Dec. 2016.

13. Trinchero, Riccardo, Mourad Larbi, Hakki M. Torun, Flavio G. Canavero, and Madhavan Swaminathan, "Machine learning and uncertainty quantification for surrogate models of integrated devices with a large number of parameters," IEEE Access, Vol. 7, 4056-4066, 2018.

14. Han, Zhong-Hua and Stefan Görtz, "Hierarchical kriging model for variable-fidelity surrogate modeling," AIAA Journal, Vol. 50, No. 9, 1885-1896, Sep. 2012.
doi:10.2514/1.J051354

15. Robinson, M. P., T. M. Benson, C. Christopoulos, J. F. Dawson, M. D. Ganley, A. C. Marvin, S. J. Porter, and D. W. P. Thomas, "Analytical formulation for the shielding effectiveness of enclosures with apertures," IEEE Transactions on Electromagnetic Compatibility, Vol. 40, No. 3, 240-248, Aug. 1998.

16. Chinese Standard, GB/T 50719-2011, Technical code for electromagnetic shielded enclosure.

17. Bai, Jinjun, Kaibin Guo, Jingchao Sun, and Ning Wang, "Application of the multi-element grid in EMC uncertainty simulation," Applied Computational Electromagnetics Society Journal (ACES), Vol. 37, No. 4, 428-434, Apr. 2022.