1. IEEE Standard Association, "IEEE Standard for Validation of Computational Electromagnetics Computer Modeling and Simulations," IEEE Std. 1597.1-2008, 1-41, 2008.
2. IEEE Standard Association, "IEEE Recommended Practice for Validation of Computational Electromagnetics Computer Modeling and Simulations," IEEE Std.1597.2-2010, 1-124, 2011.
3. Orlandi, A., G. Antonini, C. Polisini, A. Duffy, and H. Sasse, "Progress in the development of a 2D feature selective validation (FSV) method," 2008 IEEE International Symposium on Electromagnetic Compatibility, 1-6, Detroit, MI, USA, Aug. 2008.
4. Zhang, Gang, Alistair P. Duffy, Hugh Sasse, Lixin Wang, and Ricardo Jauregui, "Improvement in the definition of ODM for FSV," IEEE Transactions on Electromagnetic Compatibility, Vol. 55, No. 4, 773-779, Aug. 2013.
5. Zhang, Gang, Alistair P. Duffy, Antonio Orlandi, Danilo Di Febo, Lixin Wang, and Hugh Sasse, "Comparison of data with multiple degrees of freedom utilizing the feature selective validation method," IEEE Transactions on Electromagnetic Compatibility, Vol. 58, No. 3, 784-791, Jun. 2016.
6. IEEE Standard Association, "IEEE Standard for Validation of Computational Electromagnetics Computer Modeling and Simulations," IEEE Std. 1597.1-2022, 1-52, 2022.
7. Bai, Jinjun, Yixuan Wan, Ming Li, Gang Zhang, and Xin He, "Reduction of random variables in EMC uncertainty simulation model," Applied Computational Electromagnetics Society Journal (ACES), Vol. 37, No. 9, 941-947, Sep. 2022.
8. Tan, Tianhong, Tao Jiang, Haolin Jiang, Tianhao Wang, and Mingjuan Cai, "Uncertainty quantification method of crosstalk involving braided-shielded cable," Applied Computational Electromagnetics Society Journal (ACES), Vol. 38, No. 1, 28-35, Jan. 2023.
9. Jauregui, Ricardo, Marc Aragon, and Ferran Silva, "The role of uncertainty in the feature selective validation (FSV) method," IEEE Transactions on Electromagnetic Compatibility, Vol. 55, No. 1, 217-220, Feb. 2013.
10. Ferson, Scott, William L. Oberkampf, and Lev Ginzburg, "Model validation and predictive capability for the thermal challenge problem," Computer Methods in Applied Mechanics and Engineering, Vol. 197, No. 29-32, 2408-2430, May 2008.
11. Bai, Jinjun, Lixin Wang, Di Wang, Alistair P. Duffy, and Gang Zhang, "Validity evaluation of the uncertain EMC simulation results," IEEE Transactions on Electromagnetic Compatibility, Vol. 59, No. 3, 797-804, Jun. 2017.
12. Bai, Jinjun, Gang Zhang, Di Wang, Alistair P. Duffy, and Lixin Wang, "Performance comparison of the SGM and the SCM in EMC simulation," IEEE Transactions on Electromagnetic Compatibility, Vol. 58, No. 6, 1739-1746, Dec. 2016.
13. Trinchero, Riccardo, Mourad Larbi, Hakki M. Torun, Flavio G. Canavero, and Madhavan Swaminathan, "Machine learning and uncertainty quantification for surrogate models of integrated devices with a large number of parameters," IEEE Access, Vol. 7, 4056-4066, 2018.
14. Han, Zhong-Hua and Stefan Görtz, "Hierarchical kriging model for variable-fidelity surrogate modeling," AIAA Journal, Vol. 50, No. 9, 1885-1896, Sep. 2012.
doi:10.2514/1.J051354
15. Robinson, M. P., T. M. Benson, C. Christopoulos, J. F. Dawson, M. D. Ganley, A. C. Marvin, S. J. Porter, and D. W. P. Thomas, "Analytical formulation for the shielding effectiveness of enclosures with apertures," IEEE Transactions on Electromagnetic Compatibility, Vol. 40, No. 3, 240-248, Aug. 1998.
16. Chinese Standard, GB/T 50719-2011, Technical code for electromagnetic shielded enclosure.
17. Bai, Jinjun, Kaibin Guo, Jingchao Sun, and Ning Wang, "Application of the multi-element grid in EMC uncertainty simulation," Applied Computational Electromagnetics Society Journal (ACES), Vol. 37, No. 4, 428-434, Apr. 2022.