Vol. 123
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2024-11-20
Miniaturized Coplanar Waveguide to Rectangular Waveguide Transition Using Integrated Resonators and Variable Housing
By
Progress In Electromagnetics Research Letters, Vol. 123, 77-82, 2025
Abstract
In this paper, a miniaturized coplanar waveguide (CPW) to rectangular waveguide (RGW) transition using integrated resonators and variable housing is proposed. By properly designing the dimensions of the integrated resonators and variable housing, a compact and broadband transition can be accomplished. The -15-dB fractional bandwidth of the transition is as broad as 45.2%, which ranges from 8.21 GHz to 13 GHz, covering the whole X-band (8.2-12.4 GHz). Besides, the transition size is as small as 3.94 mm. To reduce the mechanical complexity, the housing height is from 24.5 mm to 22.86 mm, which is equal to the height of the rectangular waveguide. The -15-dB fractional bandwidth of the transition is as broad as 45.5%, which ranges from 8.18 GHz to 13 GHz, encompassing the whole X-band. Besides, the transition size is still as small as 3.94 mm. To verify the simulations, a back-to-back CPW-to-RWG transition is fabricated and measured. The simulation and measurement results are in good agreement.
Citation
Ting-Tzu Cho, and Chun-Long Wang, "Miniaturized Coplanar Waveguide to Rectangular Waveguide Transition Using Integrated Resonators and Variable Housing," Progress In Electromagnetics Research Letters, Vol. 123, 77-82, 2025.
doi:10.2528/PIERL24093001
References

1. Ponchak, George E. and Rainee N. Simons, "A new rectangular waveguide to coplanar waveguide transition," 1990 IEEE MTT-S International Microwave Symposium, 1990.

2. Kaneda, Noriaki, Yongxi Qian, and Tatsuo Itoh, "A broadband CPW-to-waveguide transition using quasi-Yagi antenna," 2000 IEEE MTT-S International Microwave Symposium Digest (Cat. No.00CH37017), Vol. 2, 617-620, 2000.

3. Lin, Ting-Huei and Ruey-Beei Wu, "CPW to waveguide transition with tapered slotline probe," IEEE Microwave and Wireless Components Letters, Vol. 11, No. 7, 314-316, 2001.

4. Hung, Cheng-Fu, An-Shyi Liu, Chih-Hung Chien, C.-L. Wang, and Ruey-Beei Wu, "Bandwidth enhancement on waveguide transition to conductor backed CPW with high dielectric constant substrate," IEEE Microwave and Wireless Components Letters, Vol. 15, No. 2, 128-130, 2005.

5. Mottonen, Ville S., "Wideband coplanar waveguide-to-rectangular waveguide transition using fin-line taper," IEEE Microwave and Wireless Components Letters, Vol. 15, No. 2, 119-121, 2005.

6. Fang, Ruei-Ying and Chun-Long Wang, "Miniaturized coplanar waveguide to rectangular waveguide transition using inductance-compensated slotline," IEEE Transactions on Components, Packaging and Manufacturing Technology, Vol. 2, No. 10, 1666-1671, 2012.

7. Tseng, Ir-Ving, Ming-Feng Zheng, Ting-Tzu Cho, and Chun-Long Wang, "Compact and broadband CPW-to-RWG transition using resonator with impedance-matching element," Progress In Electromagnetics Research Letters, Vol. 116, 71-78, 2024.

8. Mottonen, Ville S. and Antti V. Raisanen, "Novel wide-band coplanar waveguide-to-rectangular waveguide transition," IEEE Transactions on Microwave Theory and Techniques, Vol. 52, No. 8, 1836-1842, 2004.

9. Wang, Shih-Han, Che-Chi Chang, Yuan-Chun Lee, and Chun-Long Wang, "Compact and broadband CPW-to-RWG transition using stub resonators," IEEE Transactions on Microwave Theory and Techniques, Vol. 64, No. 10, 3198-3207, 2016.

10. Dong, Yunfeng, Tom K. Johansen, Vitaliy Zhurbenko, and Peter Jesper Hanberg, "Rectangular waveguide-to-coplanar waveguide transitions at U-band using E-plane probe and wire bonding," 2016 46th European Microwave Conference (EuMC), 5-8, 2016.

11. Dong, Yunfeng, Tom K. Johansen, Vitaliy Zhurbenko, and Peter Jesper Hanberg, "A rectangular waveguide-to-coplanar waveguide transition at D-band using wideband patch antenna," 2018 48th European Microwave Conference (EuMC), 1045-1048, 2018.

12. Pozar, D. M., Microwave Engineering, John Wiley & Sons, 2011.

13. Chang, Che-Chi, Hwa-Hung Kao, You-Hao Jiang, Qun-Lin Chen, Sune-Nien Hsieh, and Chun-Long Wang, "Compact and broadband MSL-to-RWG transition using DSPSL integrated with AQYA and its packaging effect," IEEE Transactions on Components, Packaging and Manufacturing Technology, Vol. 14, No. 6, 1051-1059, Jun. 2024.