Vol. 123
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2024-10-25
Broadside-Incidence Extinction Measurements of Thin Copper Circular Discs and the Extinction Paradox at 35 GHz
By
Progress In Electromagnetics Research Letters, Vol. 123, 37-39, 2025
Abstract
This article presents millimeter wavelength measurements of the mass normalized extinction cross section (extinction efficiency) of thin copper circular discs at broadside incidence. The extinction efficiencies of the discs were measured as a function of diameter and thickness at a fixed frequency of 35 GHz. The measurements cover a wide range of diameters and thicknesses and were compared with the approximate numerical solution of the problem provided by the CWW code. A good agreement between the measurements and CWW code was achieved after applying the extinction paradox for small particles with high index of refraction to the CWW code calculations.
Citation
Charles W. Bruce, and Sharhabeel Alyones, "Broadside-Incidence Extinction Measurements of Thin Copper Circular Discs and the Extinction Paradox at 35 GHz ," Progress In Electromagnetics Research Letters, Vol. 123, 37-39, 2025.
doi:10.2528/PIERL24081908
References

1. Willis, Thomas M. and Herschel Weil, "Disk scattering and absorption by an improved computational method," Applied Optics, Vol. 26, No. 18, 3987-3995, 1987.

2. Hanarp, Per, Mikael Käll, and Duncan S. Sutherland, "Optical properties of short range ordered arrays of nanometer gold disks prepared by colloidal lithography," The Journal of Physical Chemistry B, Vol. 107, No. 24, 5768-5772, 2003.

3. Li, Na, Qiao Zhang, Sean Quinlivan, James Goebl, Yang Gan, and Yadong Yin, "H$_2$O$_2$-aided seed-mediated synthesis of silver nanoplates with improved yield and efficiency," Chem. Phys. Chem., Vol. 13, No. 10, 2526-2530, 2012.

4. Langhammer, Christoph, Zhe Yuan, Igor Zorić, and Bengt Kasemo, "Plasmonic properties of supported Pt and Pd nanostructures," Nano Letters, Vol. 6, No. 4, 833-838, 2006.

5. Anquillare, Emma L., Owen D. Miller, Chia Wei Hsu, Brendan G. DeLacy, John D. Joannopoulos, S. G. Johnson, and M. Soljačić, "Efficient, designable, and broad-bandwidth optical extinction via aspect-ratio-tailored silver nanodisks," Optics Express, Vol. 24, No. 10, 10806-10816, 2016.

6. Shepherd, J. W. and A. R. Holt, "The scattering of electromagnetic radiation from finite dielectric circular cylinders," Journal of Physics A: Mathematical and General, Vol. 16, No. 3, 651, 1983.

7. DeVore, R., D. B. Hodge, and R. G. Kouyoumjian, "Backscattering cross sections of circular disks for arbitrary incidence," Journal of Applied Physics, Vol. 42, No. 8, 3075-3083, 1971.

8. Le Vine, D., A. Schneider, Roger Lang, and H. Carter, "Scattering from thin dielectric disks," IEEE Transactions on Antennas and Propagation, Vol. 33, No. 12, 1410-1413, 1985.

9. Venner, Marty J. and Charles W. Bruce, "Absorption cross section of moderately conducting disks at 35 GHz," Applied Optics, Vol. 37, No. 30, 7143-7150, 1998.

10. Alyones, Sharhabeel, Charles W. Bruce, and Michael Granado, "Anomalous extinction efficiency of two dimensional particles in the visible," Progress In Electromagnetics Research M, Vol. 88, 45-52, 2020.

11. Bohren, Craig F. and Donald R. Huffman, Absorption and Scattering of Light by Small Particles, John Wiley & Sons, 2008.

12. Born, M. and E. Wold, Principles of Optics, Cambridge University Press, 1999.

13. Van de Hulst, Hendrik C., Light Scattering by Small Particles, John Wiley and Sons, 1957.

14. Berg, Matthew J., C. M. Sorensen, and A. Chakrabarti, "A new explanation of the extinction paradox," Journal of Quantitative Spectroscopy and Radiative Transfer, Vol. 112, No. 7, 1170-1181, 2011.

15. Bruce, Charles W., Al V. Jelinek, Sheng Wu, Sharhabeel Alyones, and Qingsong Wang, "Millimeter-wavelength investigation of fibrous aerosol absorption and scattering properties," Applied Optics, Vol. 43, No. 36, 6648-6655, 2004.