Vol. 180
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2024-09-23
Topology-Optimized Plasmonic Nanoantenna for Efficient Single-Photon Extraction
By
Progress In Electromagnetics Research, Vol. 180, 55-60, 2024
Abstract
Quantum emitters coupled to plasmonic nanostructures can act as extremely bright single-photon sources. Interestingly, the mode volumes supported by the plasmonic nanostructures can be several orders of magnitude smaller than the cubic wavelength, which leads to dramatically enhanced light-matter interactions and drastically increased photon emission. However, the requirements of a small mode volume for emission speed-up are always contradictory with a sufficiently large mode volume for efficient extraction, especially in a single architecture. Here, we report the design of a topology-optimized plasmonic nanoantenna to alleviate the above limitation which could greatly enhance far-field photon extraction. The plasmonic nanoantenna is composed of an optimized gold pattern and a silicon nitride substrate, with a nanohole in the center of the gold pattern. Our design is based on density-based topology optimization and is inherently robust to dimensions and fabrication errors. As a result, the normalized extraction decay rate (γe⁄γ0) can reach 5.48 at a wavelength of 517 nm if an objective lens with a numerical aperture of 0.45 is utilized. Plasmonic nanostructures can be obtained with a small mode volume of about 5 × 10-21 m3, while emission speed-up could still be achieved. The proposed method to alleviate the contradiction of plasmonic mode volume could brighten the prospects for future integration of single-photon sources into photonic quantum networks and applications in quantum information science.
Citation
Min Chen, Lian Shen, Yifei Hua, Zijian Qin, and Huaping Wang, "Topology-Optimized Plasmonic Nanoantenna for Efficient Single-Photon Extraction," Progress In Electromagnetics Research, Vol. 180, 55-60, 2024.
doi:10.2528/PIER24080405
References

1. O'brien, Jeremy L., Akira Furusawa, and Jelena Vučković, "Photonic quantum technologies," Nature Photonics, Vol. 3, No. 12, 687-695, 2009.

2. Loss, Daniel and David P. DiVincenzo, "Quantum computation with quantum dots," Physical Review A, Vol. 57, No. 1, 120, 1998.

3. Liu, Xiaolong and Mark C. Hersam, "2D materials for quantum information science," Nature Reviews Materials, Vol. 4, No. 10, 669-684, 2019.

4. Yuan, H. Y., Yunshan Cao, Akashdeep Kamra, Rembert A. Duine, and Peng Yan, "Quantum magnonics: When magnon spintronics meets quantum information science," Physics Reports, Vol. 965, 1-74, 2022.

5. Degen, Christian L., Friedemann Reinhard, and Paola Cappellaro, "Quantum sensing," Reviews of Modern Physics, Vol. 89, No. 3, 035002, 2017.

6. Boss, Jens M., K. S. Cujia, Jonathan Zopes, and Christian L. Degen, "Quantum sensing with arbitrary frequency resolution," Science, Vol. 356, No. 6340, 837-840, 2017.

7. Schmitt, Simon, Tuvia Gefen, Felix M. Stürner, et al. "Submillihertz magnetic spectroscopy performed with a nanoscale quantum sensor," Science, Vol. 356, No. 6340, 832-837, 2017.

8. Pirandola, Stefano, B. Roy Bardhan, Tobias Gehring, Christian Weedbrook, and Seth Lloyd, "Advances in photonic quantum sensing," Nature Photonics, Vol. 12, No. 12, 724-733, 2018.

9. Chen, Yu-Ao, Qiang Zhang, Teng-Yun Chen, Wen-Qi Cai, Sheng-Kai Liao, Jun Zhang, Kai Chen, Juan Yin, Ji-Gang Ren, Zhu Chen, et al. "An integrated space-to-ground quantum communication network over 4,600 kilometres," Nature, Vol. 589, No. 7841, 214-219, 2021.

10. Sidhu, Jasminder S., Siddarth K. Joshi, Mustafa Gündoğan, et al. "Advances in space quantum communications," IET Quantum Communication, Vol. 2, No. 4, 182-217, 2021.

11. Couteau, Christophe, Stefanie Barz, Thomas Durt, Thomas Gerrits, Jan Huwer, Robert Prevedel, John Rarity, Andrew Shields, and Gregor Weihs, "Applications of single photons to quantum communication and computing," Nature Reviews Physics, Vol. 5, No. 6, 326-338, 2023.

12. Vajner, Daniel A., Lucas Rickert, Timm Gao, Koray Kaymazlar, and Tobias Heindel, "Quantum communication using semiconductor quantum dots," Advanced Quantum Technologies, Vol. 5, No. 7, 2100116, 2022.

13. Pirandola, Stefano, Riccardo Laurenza, Carlo Ottaviani, and Leonardo Banchi, "Fundamental limits of repeaterless quantum communications," Nature Communications, Vol. 8, No. 1, 1-15, 2017.

14. Gilaberte Basset, Marta, Frank Setzpfandt, Fabian Steinlechner, Erik Beckert, Thomas Pertsch, and Markus Gräfe, "Perspectives for applications of quantum imaging," Laser & Photonics Reviews, Vol. 13, No. 10, 1900097, 2019.

15. Brida, Giorgio, Marco Genovese, and Ivano Ruo Berchera, "Experimental realization of sub-shot-noise quantum imaging," Nature Photonics, Vol. 4, No. 4, 227-230, 2010.

16. Taylor, Michael A., Jiri Janousek, Vincent Daria, Joachim Knittel, Boris Hage, Hans-A. Bachor, and Warwick P. Bowen, "Subdiffraction-limited quantum imaging within a living cell," Physical Review X, Vol. 4, No. 1, 011017, 2014.

17. Bogdanov, Simeon I., Alexandra Boltasseva, and Vladimir M. Shalaev, "Overcoming quantum decoherence with plasmonics," Science, Vol. 364, No. 6440, 532-533, 2019.

18. Agio, Mario and Diego Martin Cano, "The Purcell factor of nanoresonators," Nature Photonics, Vol. 7, No. 9, 674-675, 2013.

19. Cang, Hu, Yongmin Liu, Yuan Wang, Xiaobo Yin, and Xiang Zhang, "Giant suppression of photobleaching for single molecule detection via the Purcell effect," Nano Letters, Vol. 13, No. 12, 5949-5953, 2013.

20. Bozhevolnyi, Sergey I. and Jacob B. Khurgin, "Fundamental limitations in spontaneous emission rate of single-photon sources," Optica, Vol. 3, No. 12, 1418-1421, 2016.

21. Tame, Mark S., K. R. McEnery, Ş. K. Özdemir, Jinhyoung Lee, Stefan A. Maier, and M. S. Kim, "Quantum plasmonics," Nature Physics, Vol. 9, No. 6, 329-340, 2013.

22. Zhou, Zhang-Kai, Jingfeng Liu, Yanjun Bao, Lin Wu, Ching Eng Png, Xue-Hua Wang, and Cheng-Wei Qiu, "Quantum plasmonics get applied," Progress in Quantum Electronics, Vol. 65, 1-20, 2019.

23. Russell, Kasey J., Tsung-Li Liu, Shanying Cui, and Evelyn L. Hu, "Large spontaneous emission enhancement in plasmonic nanocavities," Nature Photonics, Vol. 6, No. 7, 459-462, 2012.

24. Akselrod, Gleb M., Christos Argyropoulos, Thang B. Hoang, Cristian Ciracì, Chao Fang, Jiani Huang, David R. Smith, and Maiken H. Mikkelsen, "Probing the mechanisms of large Purcell enhancement in plasmonic nanoantennas," Nature Photonics, Vol. 8, No. 11, 835-840, 2014.

25. Işiklar, Göktuğ, Philip Trøst Kristensen, Jesper Mørk, Ole Sigmund, and Rasmus Ellebæk Christiansen, "On the trade-off between mode volume and quality factor in dielectric nanocavities optimized for Purcell enhancement," Optics Express, Vol. 30, No. 26, 47304-47314, 2022.

26. Yang, Guoce, Qixin Shen, Yijie Niu, Hong Wei, Benfeng Bai, Maiken H. Mikkelsen, and Hong-Bo Sun, "Unidirectional, ultrafast, and bright spontaneous emission source enabled by a hybrid plasmonic nanoantenna," Laser & Photonics Reviews, Vol. 14, No. 3, 1900213, 2020.

27. Neumann, Philipp, Johannes Beck, Matthias Steiner, Florian Rempp, Helmut Fedder, Philip R. Hemmer, Jorg Wrachtrup, and Fedor Jelezko, "Single-shot readout of a single nuclear spin," Science, Vol. 329, No. 5991, 542-544, 2010.

28. Dutt, M. V. Gurudev, L. Childress, L. Jiang, E. Togan, J. Maze, F. Jelezko, A. S. Zibrov, P. R. Hemmer, and M. D. Lukin, "Quantum register based on individual electronic and nuclear spin qubits in diamond," Science, Vol. 316, No. 5829, 1312-1316, 2007.

29. Bogdanov, Simeon I., Oksana A. Makarova, Xiaohui Xu, Zachariah O. Martin, Alexei S. Lagutchev, Matthew Olinde, Deesha Shah, Sarah N. Chowdhury, Aidar R. Gabidullin, Ilya A. Ryzhikov, et al. "Ultrafast quantum photonics enabled by coupling plasmonic nanocavities to strongly radiative antennas," Optica, Vol. 7, No. 5, 463-469, 2020.

30. Sugawara, Masakazu, Yining Xuan, Yasuyoshi Mitsumori, Keiichi Edamatsu, and Mark Sadgrove, "Plasmon-enhanced single photon source directly coupled to an optical fiber," Physical Review Research, Vol. 4, No. 4, 043146, 2022.

31. Bogdanov, Simeon I., Mikhail Y. Shalaginov, Alexei S. Lagutchev, Chin-Cheng Chiang, Deesha Shah, Alexandr S. Baburin, Ilya A. Ryzhikov, Ilya A. Rodionov, Alexander V. Kildishev, Alexandra Boltasseva, and Vladimir M. Shalaev, "Ultrabright room-temperature sub-nanosecond emission from single nitrogen-vacancy centers coupled to nanopatch antennas," Nano Letters, Vol. 18, No. 8, 4837-4844, 2018.

32. Galfsky, T., H. N. S. Krishnamoorthy, W. Newman, E. E. Narimanov, Z. Jacob, and V. M. Menon, "Active hyperbolic metamaterials: Enhanced spontaneous emission and light extraction," Optica, Vol. 2, No. 1, 62-65, 2015.

33. Lu, Dylan, Jimmy J. Kan, Eric E. Fullerton, and Zhaowei Liu, "Enhancing spontaneous emission rates of molecules using nanopatterned multilayer hyperbolic metamaterials," Nature Nanotechnology, Vol. 9, No. 1, 48-53, 2014.

34. Shen, Lian, Xiao Lin, Mikhail Y. Shalaginov, Tony Low, Xianmin Zhang, Baile Zhang, and Hongsheng Chen, "Broadband enhancement of on-chip single-photon extraction via tilted hyperbolic metamaterials," Applied Physics Reviews, Vol. 7, No. 2, 021403, 2020.

35. Qin, Zijian, Lian Shen, Mikhail Shalaginov, Huaping Wang, Hongsheng Chen, and Xiao Lin, "Single-photon extraction via spatial topological transition," Applied Physics Reviews, Vol. 11, No. 1, 011412, 2024.

36. Jensen, J. S. and O. Sigmund, "Topology optimization for nano-photonics," Laser & Photonics Reviews, Vol. 5, No. 2, 308-321, 2011.

37. Wambold, Raymond A., Zhaoning Yu, Yuzhe Xiao, Benjamin Bachman, Gabriel Jaffe, Shimon Kolkowitz, Jennifer T. Choy, Mark A. Eriksson, Robert J. Hamers, and Mikhail A. Kats, "Adjoint-optimized nanoscale light extractor for nitrogen-vacancy centers in diamond," Nanophotonics, Vol. 10, No. 1, 393-401, 2020.

38. Yesilyurt, Omer, Zhaxylyk A. Kudyshev, Alexandra Boltasseva, Vladimir M. Shalaev, and Alexander V. Kildishev, "Efficient topology-optimized couplers for on-chip single-photon sources," ACS Photonics, Vol. 8, No. 10, 3061-3068, 2021.

39. Fu, Yan, Daekyoung Kim, Wei Jiang, Wenping Yin, Tae Kyu Ahn, and Heeyeop Chae, "Excellent stability of thicker shell CdSe@ ZnS/ZnS quantum dots," RSC Advances, Vol. 7, No. 65, 40866-40872, 2017.

40. Johnson, Peter B. and R. W. Christy, "Optical constants of the noble metals," Physical Review B, Vol. 6, No. 12, 4370, 1972.

41. Shalaginov, Mikhail Y., Vadim V. Vorobyov, Jing Liu, Marcello Ferrera, Alexey V. Akimov, Alexei Lagutchev, Andrey N. Smolyaninov, Vasily V Klimov, Joseph Irudayaraj, Alexander V. Kildishev, et al. "Enhancement of single‑photon emission from nitrogen‑vacancy centers with TiN/(Al, Sc) N hyperbolic metamaterial," Laser & Photonics Reviews, Vol. 9, No. 1, 120-127, 2015.

42. Yeung, M. S. and T. K. Gustafson, "Spontaneous emission near an absorbing dielectric surface," Physical Review A, Vol. 54, No. 6, 5227, 1996.

43. Ji, Ling, Jun Gao, Ai-Lin Yang, Zhen Feng, Xiao-Feng Lin, Zhong-Gen Li, and Xian-Min Jin, "Towards quantum communications in free-space seawater," Optics Express, Vol. 25, No. 17, 19795-19806, 2017.

44. Chakravarthi, Srivatsa, Pengning Chao, Christian Pederson, Sean Molesky, Andrew Ivanov, Karine Hestroffer, Fariba Hatami, Alejandro W. Rodriguez, and Kai-Mei C. Fu, "Inverse-designed photon extractors for optically addressable defect qubits," Optica, Vol. 7, No. 12, 1805-1811, 2020.

45. Kinkhabwala, Anika, Zongfu Yu, Shanhui Fan, Yuri Avlasevich, Klaus Müllen, and W. E. Moerner, "Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna," Nature Photonics, Vol. 3, No. 11, 654-657, 2009.

46. Andersen, Sebastian K. H., Simeon Bogdanov, Oksana Makarova, Yi Xuan, Mikhail Y. Shalaginov, Alexandra Boltasseva, Sergey I. Bozhevolnyi, and Vladimir M. Shalaev, "Hybrid plasmonic bullseye antennas for efficient photon collection," ACS Photonics, Vol. 5, No. 3, 692-698, 2018.