1. Elsheakh, Dalia Mohammed Nasha, Hala Elsadek, Esmat A. F. Abdallah, Magdy F. Iskander, and Hadia El-Hennawy, "Reconfigurable single and multiband inset feed microstrip patch antenna for wireless communication devices," Progress In Electromagnetics Research C, Vol. 12, 191-201, 2010.
2. Bakariya, Pritam Singh, Santanu Dwari, Manas Sarkar, and Mrinal Kanti Mandal, "Proximity-coupled microstrip antenna for bluetooth, WiMAX, and WLAN applications," IEEE Antennas and Wireless Propagation Letters, Vol. 14, 755-758, 2014.
3. Wu, Rui-Zhi, Peng Wang, Qiang Zheng, and Rui-Peng Li, "Compact CPW‐fed triple‐band antenna for diversity applications," Electronics Letters, Vol. 51, No. 10, 735-736, 2015.
4. Mehdipour, Aidin, Abdel-Razik Sebak, Christopher W. Trueman, and Tayeb A. Denidni, "Compact multiband planar antenna for 2.4/3.5/5.2/5.8-GHz wireless applications," IEEE Antennas and Wireless Propagation Letters, Vol. 11, 144-147, 2012.
5. Cao, Y. F., S. W. Cheung, and T. I. Yuk, "A multiband slot antenna for GPS/WiMAX/WLAN systems," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 3, 952-958, 2015.
6. Saraswat, Ritesh Kumar and Mithilesh Kumar, "A frequency band reconfigurable UWB antenna for high gain applications," Progress In Electromagnetics Research B, Vol. 64, 29-45, 2015.
7. Samsuzzaman, M., T. Islam, N. H. Abd Rahman, Mohammad Rashed Iqbal Faruque, and J. S. Mandeep, "Compact modified swastika shape patch antenna for WLAN/WiMAX applications," International Journal of Antennas and Propagation, Vol. 2014, No. 1, 825697, 2014.
8. Ali, Tanweer, Mohammad Muzammil Khaleeq, Sameena Pathan, and Rajashekhar C. Biradar, "A multiband antenna loaded with metamaterial and slots for GPS/WLAN/WiMAX applications," Microwave and Optical Technology Letters, Vol. 60, No. 1, 79-85, 2018.
9. Chaurasia, Praveen, Binod Kumar Kanaujia, Santanu Dwari, and Mukesh Kumar Khandelwal, "Design and analysis of seven-bands-slot-antenna with small frequency ratio for different wireless applications," AEU --- International Journal of Electronics and Communications, Vol. 99, 100-109, 2019.
10. Zhu, J. and G. V. Eleftheriades, "Dual-band metamaterial-inspired small monopole antenna for WiFi applications," Electronics Letters, Vol. 45, No. 22, 1104-1106, 2009.
11. Xu, He-Xiu, Guang-Ming Wang, Yuan-Yuan Lv, Mei-Qing Qi, Xi Gao, and Shuo Ge, "Multifrequency monopole antennas by loading metamaterial transmission lines with dual-shunt branch circuit," Progress In Electromagnetics Research, Vol. 137, 703-725, 2013.
12. Alam, T., M. Samsuzzaman, M. R. I. Faruque, and M. T. Islam, "A metamaterial unit cell inspired antenna for mobile wireless applications," Microwave and Optical Technology Letters, Vol. 58, No. 2, 263-267, 2016.
13. Daniel, S., R. Pandeeswari, and S. Raghavan, "A compact metamaterial loaded monopole antenna with offset-fed microstrip line for wireless applications," AEU --- International Journal of Electronics and Communications, Vol. 83, 88-94, 2018.
14. Rao, M. Venkateswara, B. T. P. Madhav, T. Anilkumar, and B. Prudhvi Nadh, "Metamaterial inspired quad band circularly polarized antenna for WLAN/ISM/Bluetooth/WiMAX and satellite communication applications," AEU --- International Journal of Electronics and Communications, Vol. 97, 229-241, 2018.
15. Anguera, Jaume, Carles Puente, Carmen Borja, and Jordi Soler, "Fractal shaped antennas: A review," Encyclopedia of RF and Microwave Engineering, 2005.
16. Chen, Horng-Dean, Hui-Wen Yang, and Chow-Yen-Desmond Sim, "Single open-slot antenna for LTE/WWAN smartphone application," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 8, 4278-4282, 2017.
17. Lee, Sang Heun, Yohan Lim, Young Joong Yoon, Chang-Beom Hong, and Hyung-Il Kim, "Multiband folded slot antenna with reduced hand effect for handsets," IEEE Antennas and Wireless Propagation Letters, Vol. 9, 674-677, 2010.
18. Yuan, Bo, Yazi Cao, and Gaofeng Wang, "A miniaturized printed slot antenna for six-band operation of mobile handsets," IEEE Antennas and Wireless Propagation Letters, Vol. 10, 854-857, 2011.
19. Sharma, Sameer Kumar, Jai Deep Mulchandani, Devvrat Gupta, and Raghvendra Kumar Chaudhary, "Triple‐band metamaterial‐inspired antenna using FDTD technique for WLAN/WiMAX applications," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 25, No. 8, 688-695, 2015.
20. Ali, Tanweer and Rajashekhar C. Biradar, "A compact multiband antenna using λ/4 rectangular stub loaded with metamaterial for IEEE 802.11N and IEEE 802.16E," Microwave and Optical Technology Letters, Vol. 59, No. 5, 1000-1006, 2017.
21. Kukreja, Jaspreet, Dilip Kumar Choudhary, and Raghvendra Kumar Chaudhary, "CPW fed miniaturized dual‐band short‐ended metamaterial antenna using modified split‐ring resonator for wireless application," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 27, No. 8, e21123, 2017.
22. Saraswat, Ritesh K. and Mithilesh Kumar, "A metamaterial hepta-band antenna for wireless applications with specific absorption rate reduction," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 29, No. 10, e21824, 2019.
23. Ali, Tanweer, Mohammad Saadh Aw, and Rajashekhar C. Biradar, "A fractal quad-band antenna loaded with L-shaped slot and metamaterial for wireless applications," International Journal of Microwave and Wireless Technologies, Vol. 10, No. 7, 826-834, 2018.
24. Pandeeswari, Ramasamy and Singaravelu Raghavan, "Broadband monopole antenna with split ring resonator loaded substrate for good impedance matching," Microwave and Optical Technology Letters, Vol. 56, No. 10, 2388-2392, 2014.
25. Arora, Chirag, Shyam Sundar Pattnaik, and Rudra Narayan Baral, "SRR inspired microstrip patch antenna array," Progress In Electromagnetics Research C, Vol. 58, 89-96, 2015.
26. Rajeshkumar, V. and Singaravelu Raghavan, "SRR‐based polygon ring penta‐band fractal antenna for GSM/WLAN/WiMAX/ITU band applications," Microwave and Optical Technology Letters, Vol. 57, No. 6, 1301-1305, 2015.
27. Elavarasi, C. and T. Shanmuganantham, "Multiband SRR loaded Koch star fractal antenna," Alexandria Engineering Journal, Vol. 57, No. 3, 1549-1555, 2018.
28. Ahmad, B. H. and H. Nornikman, "Fractal microstrip antenna with Minkowski Island split ring resonator for broadband application," 2013 IEEE International RF and Microwave Conference (RFM), 214-218, Penang, Malaysia, Dec. 2013.
29. Hu, Jian-Rong and Jiu-Sheng Li, "Compact microstrip antennas using CSRR structure ground plane," Microwave and Optical Technology Letters, Vol. 56, No. 1, 117-120, 2014.
30. Rajkumar, Rengasamy and Kommuri Usha Kiran, "A metamaterial inspired compact open split ring resonator antenna for multiband operation," Wireless Personal Communications, Vol. 97, 951-965, 2017.
31. Saraswat, Ritesh Kumar and Mithilesh Kumar, "Miniaturized slotted ground UWB antenna loaded with metamaterial for WLAN and WiMAX applications," Progress In Electromagnetics Research B, Vol. 65, 65-80, 2016.
32. Saraswat, Ritesh K. and Mithilesh Kumar, "A vertex-fed hexa-band frequency reconfigurable antenna for wireless applications," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 29, No. 10, e21893, 2019.
33. Liu, Wen-Chung, Chao-Ming Wu, and Yang Dai, "Design of triple-frequency microstrip-fed monopole antenna using defected ground structure," IEEE Transactions on Antennas and Propagation, Vol. 59, No. 7, 2457-2463, 2011.
34. Singh, Sanjay, Atul Varshney, Vipul Sharma, Issa Tamer Elfergani, Chemseddine Zebiri, and Jonathan Rodriguez, "A compact off -set edge fed odd-symmetric hybrid fractal slotted antenna for UWB and space applications," Progress In Electromagnetics Research B, Vol. 102, 37-60, 2023.
35. Computer simulation technology microwave studio (CST MWS), Retrieved from http://www.cst.co.
36. Sivia, Jagtar Singh, Amar Partap Singh Pharwaha, and Tara Singh Kamal, "Analysis and design of circular fractal antenna using artificial neural networks," Progress In Electromagnetics Research B, Vol. 56, 251-267, 2013.
37. Chen, Hongsheng, Jingjing Zhang, Yang Bai, Yu Luo, Lixin Ran, Qin Jiang, and Jin Au Kong, "Experimental retrieval of the effective parameters of metamaterials based on a waveguide method," Optics Express, Vol. 14, No. 26, 12944-12949, 2006.
38. Saha, Chinmoy and Jawad Y. Siddiqui, "Versatile CAD formulation for estimation of the resonant frequency and magnetic polarizability of circular split ring resonators," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 21, No. 4, 432-438, 2011.
39. Smith, D. R., Sheldon Schultz, P. Markoš, and C. M. Soukoulis, "Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients," Physical Review B, Vol. 65, 195104-195109, 2002.
40. Saraswat, Ritesh Kumar and Mithilesh Kumar, "A quad band metamaterial miniaturized antenna for wireless applications with gain enhancement," Wireless Personal Communications, Vol. 114, No. 4, 3595-3612, 2020.
41. Saraswat, Ritesh Kumar and Mithilesh Kumar, "Implementation of hybrid fractal metamaterial inspired frequency band reconfigurable multiband antenna for wireless applications," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 30, No. 9, e22315, 2020.
42. Agrawal, Archana, Pramod Kumar Singhal, and Ankit Jain, "Design and optimization of a microstrip patch antenna for increased bandwidth," International Journal of Microwave and Wireless Technologies, Vol. 5, No. 4, 529-535, 2013.
43. Puri, Isha and Archana Agrawal, "Bandwidth and gain increment of microstrip patch antenna with shifted elliptical slot," International Journal of Engineering Science and Technology, Vol. 3, No. 7, 5539-5545, 2011.
44. Maheshwari, Shagun, Priyanka Jain, and Archana Agarwal, "CPW-fed wideband antenna with U-shaped ground plane," International Journal of Wireless and Microwave Technologies, Vol. 5, 25-31, 2014.
45. Jain, Ankit and Archana Agrawal, "Design and optimization of a microstrip patch antenna for increased bandwidth," International Journal of Electronics and Communication Engineering, Vol. 7, No. 2, 191-195, 2014.
46. Vaswani, J. and A. Agarwal, "A four port, dual band antenna for fifth generation mobile communication and WLAN services," Acta Technica Corviniensis --- Bulletin of Engineering, Vol. 13, No. 4, 73-76, 2020.
47. Agarwal, Archana, Manish Kumar, Priyanka Jain, and Shagun Maheshwari, "Tapered circular microstrip antenna with modified ground plane for UWB communications," International Journal of Electronics and Communication Engineering & Technology (IJECET), Vol. 4, No. 3, 43-47, 2013.
48. Vaswani, Jitendra, "Dual-band, dual-polarized two element slot antenna for fifth generation mobile devices," Turkish Journal of Computer and Mathematics Education (TURCOMAT), Vol. 12, No. 3, 4822-4830, 2021.
49. Vaswani, Jitendra and Archana Agarwal, "Twelve-port dual-polarized dual-band mimo antenna for fifth-generation mobile devices," ICTACT Journal on Communication Technology, Vol. 12, No. 3, 2490-2497, 2021.
50. Sim, Chow-Yen-Desmond, Heng-You Liu, and Ci-Jin Huang, "Wideband MIMO antenna array design for future mobile devices operating in the 5G NR frequency bands n77/n78/n79 and LTE band 46," IEEE Antennas and Wireless Propagation Letters, Vol. 19, No. 1, 74-78, 2020.
51. Bharti, Gurpreet and Jagtar Singh Sivia, "A design of multiband nested square shaped ring fractal antenna with circular ring elements for wireless applications," Progress In Electromagnetics Research C, Vol. 108, 115-125, 2021.
52. Kaur, Amandeep and Praveen Kumar Malik, "Multiband elliptical patch fractal and defected ground structures microstrip patch antenna for wireless applications," Progress In Electromagnetics Research B, Vol. 91, 157-173, 2021.
53. Mu, Weidong, Zhonggen Wang, Ming Yang, Wenyan Nie, and Pan Wang, "A six-port slot antenna system with wideband and high-isolation for 5G NR bands," Progress In Electromagnetics Research M, Vol. 107, 105-118, 2022.
54. Jiang, Jun-Yi and Hsin-Lung Su, "A wideband eight-element MIMO antenna array in 5G NR n77/78/79 and WLAN-5GHz bands for 5G smartphone applications," International Journal of Antennas and Propagation, Vol. 2022, No. 1, 8456936, 2022.
55. Murugan, Chinnathambi and Thandapani Kavitha, "A compact four-element modified annular ring antenna for 5G applications," Progress In Electromagnetics Research C, Vol. 137, 169-183, 2023.
56. Xue, Jincheng, Guolong Wang, Shuman Li, Zhuopeng Wang, and Quanquan Liang, "A metamaterial based dual-band UWB antenna design for 5G applications," Progress In Electromagnetics Research M, Vol. 127, 85-92, 2024.
57. Neeshu, K. and Anjini Kumar Tiwary, "A compact, high gain ring metamaterial unit cell loaded triple band antenna for 5G application," Progress In Electromagnetics Research M, Vol. 124, 99-106, 2024.
58. Garg, Supriya, Prince Jain, Sahil Garg, Bhavya Sharma, Gourab Das, Neha Sardana, Sanjeev Kumar, and Arun Kumar Singh, "Compact polarization-insensitive microwave metamaterial absorber with hepta-band characteristics," Physica Scripta, Vol. 99, No. 7, 075541, 2024.
59. Samanta, Soumadri, Gaurav Pal Singh, Prince Jain, Arun Kumar Singh, and Neha Sardana, "Arm angle dependence of X-shaped metamaterial resonator in the X-band regime," International Conference on Fundamental and Industrial Research on Materials, 183-190, 2024.
60. Jain, Prince, Prabodh Kumar Sahoo, Aymen Dheyaa Khaleel, and Ahmed Jamal Abdullah Al-Gburi, "Enhanced prediction of metamaterial antenna parameters using advanced machine learning regression models," Progress In Electromagnetics Research C, Vol. 146, 1-12, 2024.
61. Wang, Lin, Li Han, Wanlong Guo, Libo Zhang, Chenyu Yao, Zhiqingzi Chen, Yulu Chen, Cheng Guo, Kaixuan Zhang, Chia-Nung Kuo, et al. "Hybrid Dirac semimetal-based photodetector with efficient low-energy photon harvesting," Light: Science & Applications, Vol. 11, No. 1, 53, 2022.
62. Viti, Leonardo, Antonio Politano, Kai Zhang, and Miriam Serena Vitiello, "Thermoelectric terahertz photodetectors based on selenium-doped black phosphorus flakes," Nanoscale, Vol. 11, No. 4, 1995-2002, 2019.
63. Viti, Leonardo, Jin Hu, Dominique Coquillat, Wojciech Knap, Alessandro Tredicucci, Antonio Politano, and Miriam Serena Vitiello, "Black-phosphorus terahertz photodetectors," Adv. Mater., Vol. 27, 5567-5572, 2015.
64. Zhang, Kaixuan, Li Han, Zhen Hu, Kening Xiao, Mengjie Jiang, Anqi Yu, Xiaokai Pan, Dong Wang, Libo Zhang, Xuyang Lv, et al. "Plasmonic architectures boosting performance in terahertz photodetectors," Laser & Photonics Reviews, Vol. 18, No. 6, 2301243, 2024.
65. Xu, Wen, Tae Kyung Lee, Byeong-Seok Moon, Hongwei Song, Xu Chen, Byungae Chun, Young-Jin Kim, Sang Kyu Kwak, Peng Chen, and Dong-Hwan Kim, "Broadband plasmonic antenna enhanced upconversion and its application in flexible fingerprint identification," Advanced Optical Materials, Vol. 6, No. 6, 1701119, 2018.
66. Park, Kyoung-Duck and Markus B. Raschke, "Polarization control with plasmonic antenna tips: A universal approach to optical nanocrystallography and vector-field imaging," Nano Letters, Vol. 18, No. 5, 2912-2917, 2018.
67. Zak, Audrey, Michael A. Andersson, Maris Bauer, Jonas Matukas, Alvydas Lisauskas, Hartmut G. Roskos, and Jan Stake, "Antenna-integrated 0.6 THz FET direct detectors based on CVD graphene," Nano Letters, Vol. 14, No. 10, 5834-5838, 2014.
68. Zhang, Kaixuan, Zhen Hu, Libo Zhang, Yulu Chen, Dong Wang, Mengjie Jiang, Gianluca D'Olimpio, Li Han, Chenyu Yao, Zhiqingzi Chen, et al. "Ultrasensitive self-driven terahertz photodetectors based on low-energy type-ii dirac fermions and related van der waals heterojunctions," Small, Vol. 19, No. 1, 2205329, 2023.
69. Xu, Huang, Cheng Guo, Jiazhen Zhang, Wanlong Guo, Chia-Nung Kuo, Chin Shan Lue, Weida Hu, Lin Wang, Gang Chen, Antonio Politano, Xiaoshuang Chen, and Wei Lu, "PtTe2-based type-II dirac semimetal and its van der waals heterostructure for sensitive room temperature terahertz photodetection," Small, Vol. 15, No. 52, 1903362, 2019.
70. Tang, Weiwei, Antonio Politano, Cheng Guo, Wanlong Guo, Changlong Liu, Lin Wang, Xiaoshuang Chen, and Wei Lu, "Ultrasensitive room-temperature terahertz direct detection based on a bismuth selenide topological insulator," Advanced Functional Materials, Vol. 28, No. 31, 1801786, 2018.