Vol. 123
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2024-10-14
Magnetic Resonance Eddy Current Detection for Rebar Corrosion in Concrete
By
Progress In Electromagnetics Research Letters, Vol. 123, 21-27, 2025
Abstract
Rebar corrosion is a common hidden danger in concrete structures, posing a serious threat to structural safety. Due to its concealed nature, detecting rebar corrosion remains a significant challenge. Recently, a new detecting principle for internal rebar corrosion: Magnetic Resonance Eddy Current Penetration Imaging (MREPI) is proposed. This method significantly enhances the detection depth of eddy currents through resonance amplification. In this work, the theoretical and numerical analysis of MREPI has been done. The results demonstrate the higher sensitivity than the traditional eddy current testing (ECT). Furthermore, we built an MREPI sensor by using nanocrystalline soft magnetic metal as magnetic core to detect the rebar corrosion. Experimental results show that the proposed sensor can effectively test rebar within concrete, with the imaging patterns of corroded rebar being distinguishable.
Citation
Xiaoming She, Haitao Chen, Zhengxuan Zhang, Jinming Zhang, and Leng Liao, "Magnetic Resonance Eddy Current Detection for Rebar Corrosion in Concrete," Progress In Electromagnetics Research Letters, Vol. 123, 21-27, 2025.
doi:10.2528/PIERL24072302
References

1. Lu, Chunhua, Weiliang Jin, and Ronggui Liu, "Reinforcement corrosion-induced cover cracking and its time prediction for reinforced concrete structures," Corrosion Science, Vol. 53, No. 4, 1337-1347, 2011.

2. Bouchar, M., E. Foy, D. Neff, and P. Dillmann, "The complex corrosion system of a medieval iron rebar from the Bourges’ Cathedral. Characterization and reactivity studies," Corrosion Science, Vol. 76, 361-372, 2013.

3. Zhang, Jinrui, Hongyan Ma, Wangji Yan, and Zongjin Li, "Defect detection and location in switch rails by acoustic emission and Lamb wave analysis: A feasibility study," Applied Acoustics, Vol. 105, 67-74, 2016.

4. Qiu, Junli, Hong Zhang, Jianting Zhou, Hu Ma, and Leng Liao, "Experimental analysis of the correlation between bending strength and SMFL of corroded RC beams," Construction and Building Materials, Vol. 214, 594-605, 2019.

5. Miró, Marina, Jesus N. Eiras, P. Poveda, M. Á. Climent, and J. Ramis, "Detecting cracks due to steel corrosion in reinforced cement mortar using intermodulation generation of ultrasonic waves," Construction and Building Materials, Vol. 286, 122915, 2021.

6. Fang, Guohao, Weijian Ding, Yuqing Liu, Jianchao Zhang, Feng Xing, and Biqin Dong, "Identification of corrosion products and 3D distribution in reinforced concrete using X-ray micro computed tomography," Construction and Building Materials, Vol. 207, 304-315, 2019.

7. Koido, Junji and Hiroshi Hoshikawa, "Covering thickness and diameter measurement of reinforcing bars by eddy current testing using neural network," Review of Progress in Quantitative Nondestructive Evaluation, 841-847, 1995.

8. De Alcantara, N. P., F. M. Da Silva, M. T. Guimarães, and M. D. Pereira, "Corrosion assessment of steel bars used in reinforced concrete structures by means of eddy current testing," Sensors, Vol. 16, No. 1, 15, 2016.
doi:10.3390/s16010015

9. Kurs, Andre, Aristeidis Karalis, Robert Moffatt, John D. Joannopoulos, Peter Fisher, and Marin Soljacic, "Wireless power transfer via strongly coupled magnetic resonances," Science, Vol. 317, No. 5834, 83-86, 2007.
doi:10.1126/science.1143254

10. Liu, Cunyue and Yonggui Dong, "Resonant coupling of a passive inductance-capacitance-resistor loop in coil-based sensing systems," IEEE Sensors Journal, Vol. 12, No. 12, 3417-3423, 2012.

11. Liu, Cunyue and Yonggui Dong, "Resonant enhancement of a passive coil-capacitance loop in eddy current sensing path," Measurement, Vol. 45, No. 3, 622-626, 2012.

12. Hor, Yew Li, Yu Zhong, Viet Phuong Bui, and Ching Eng Png, "Electrical resonance eddy current sensor for submillimeter defect detection," Nondestructive Characterization and Monitoring of Advanced Materials, Aerospace, and Civil Infrastructure 2017, Vol. 10169, 535-541, Portland, Oregon, United States, 2017.

13. Hughes, Robert, Yichao Fan, and S. Dixon, "Near electrical resonance signal enhancement (NERSE) in eddy-current crack detection," NDT & E International, Vol. 66, 82-89, 2014.

14. Zhang, Senhua, Hong Zhang, Huiling Liu, Jianting Zhou, Changhua Yin, and Leng Liao, "Resonance enhanced magnetoelastic method with high sensitivity for steel stress measurement," Measurement, Vol. 186, 110139, 2021.

15. Chen, Haitao, Leng Liao, Jianting Zhou, Hong Zhang, Senhua Zhang, Tian Lan, Zhengren Zhang, and Chunlian Hu, "Magnetic resonance eddy penetrating imaging for detecting reinforcement corrosion in concrete," Automation in Construction, Vol. 165, 105512, 2024.

16. Dean, K. J., "Waves and fields in optoelectronics: Prentice-hall series in solid state physical electronics," Physics Bulletin, Vol. 35, 339, 1984.
doi:10.1088/0031-9112/35/8/023

17. Koh, Kim Ean, Teck Chuan Beh, Takehiro Imura, and Yoichi Hori, "Impedance matching and power division using impedance inverter for wireless power transfer via magnetic resonant coupling," IEEE Transactions on Industry Applications, Vol. 50, No. 3, 2061-2070, 2014.

18. Versaci, Mario, Giovanni Angiulli, Paolo Crucitti, Domenico De Carlo, Filippo Laganà, Diego Pellicanò, and Annunziata Palumbo, "A fuzzy similarity-based approach to classify numerically simulated and experimentally detected carbon fiber-reinforced polymer plate defects," Sensors, Vol. 22, No. 11, 4232, 2022.
doi:10.3390/s22114232

19. Versaci, Mario, Giovanni Angiulli, Paolo di Barba, and Francesco Carlo Morabito, "Joint use of eddy current imaging and fuzzy similarities to assess the integrity of steel plates," Open Physics, Vol. 18, No. 1, 230-240, 2020.