1. Dowling, Jonathan P., "Quantum optical metrology --- The lowdown on high-N00N states," Contemporary Physics, Vol. 49, No. 2, 125-143, 2008.
doi:10.1080/00107510802091298
2. Lloyd, Seth, "Enhanced sensitivity of photodetection via quantum illumination," Science, Vol. 321, No. 5895, 1463-1465, 2008.
doi:10.1126/science.1160627
3. Hao, Shuhong, Haowei Shi, Wei Li, Jeffrey H. Shapiro, Quntao Zhuang, and Zheshen Zhang, "Entanglement-assisted communication surpassing the ultimate classical capacity," Physical Review Letters, Vol. 126, No. 25, 250501, 2021.
doi:10.1103/PhysRevLett.126.250501
4. Shapiro, Jeffrey H., "The quantum illumination story," IEEE Aerospace and Electronic Systems Magazine, Vol. 35, No. 4, 8-20, 2020.
doi:10.1109/MAES.2019.2957870
5. Karsa, Athena, Gaetana Spedalieri, Quntao Zhuang, and Stefano Pirandola, "Quantum illumination with a generic gaussian source," Physical Review Research, Vol. 2, No. 2, 023414, 2020.
doi:10.1103/PhysRevResearch.2.023414
6. Sorelli, Giacomo, Nicolas Treps, Frederic Grosshans, and Fabrice Boust, "Detecting a target with quantum entanglement," IEEE Aerospace and Electronic Systems Magazine, Vol. 37, No. 5, 68-90, 2021.
doi:10.1109/MAES.2021.3116323
7. Shapiro, Jeffrey H., "Extended version of van trees's receiver operating characteristic approximation," IEEE Transactions on Aerospace and Electronic Systems, Vol. 35, No. 2, 709-716, 1999.
doi:10.1109/7.766950
8. Lopaeva, E. D., Ivano Ruo Berchera, Ivo Pietro Degiovanni, S. Olivares, Giorgio Brida, and Marco Genovese, "Experimental realization of quantum illumination," Physical Review Letters, Vol. 110, No. 15, 153603, 2013.
doi:10.1103/PhysRevLett.110.153603
9. Pirandola, Stefano, B. Roy Bardhan, Tobias Gehring, Christian Weedbrook, and Seth Lloyd, "Advances in photonic quantum sensing," Nature Photonics, Vol. 12, No. 12, 724-733, 2018.
doi:10.1038/s41566-018-0301-6
10. Luong, David, C. W. Sandbo Chang, A. M. Vadiraj, Anthony Damini, Christopher M. Wilson, and Bhashyam Balaji, "Receiver operating characteristics for a prototype quantum two-mode squeezing radar," IEEE Transactions on Aerospace and Electronic Systems, Vol. 56, No. 3, 2041-2060, 2019.
doi:10.1109/TAES.2019.2951213
11. Alibart, Olivier, Virginia D'Auria, Marc De Micheli, Florent Doutre, Florian Kaiser, and others, "Quantum photonics at telecom wavelengths based on lithium niobate waveguides," J. Opt., Vol. 18, 104001, 2016.
doi:10.1088/2040-8978/18/10/104001
12. Lee, Kim Fook, Jun Chen, Chuang Liang, Xiaoying Li, Paul L. Voss, and Prem Kumar, "Generation of high-purity telecom-band entangled photon pairs in dispersion-shifted fiber," Optics Letters, Vol. 31, No. 12, 1905-1907, 2006.
doi:10.1364/OL.31.001905
13. Eichler, Christopher, Deniz Bozyigit, Christian Lang, Martin Baur, Lars Steffen, Johannes M. Fink, Stefan Filipp, and Andreas Wallraff, "Observation of two-mode squeezing in the microwave frequency domain," Physical Review Letters, Vol. 107, No. 11, 113601, 2011.
doi:10.1103/PhysRevLett.107.113601
14. Flurin, Emmanuel, Nicolas Roch, Francois Mallet, Michel H. Devoret, and Benjamin Huard, "Generating entangled microwave radiation over two transmission lines," Physical Review Letters, Vol. 109, No. 18, 183901, 2012.
doi:10.1103/PhysRevLett.109.183901
15. Flurin, Emmanuel, Nicolas Roch, Jean-Damien Pillet, Francois Mallet, and Benjamin Huard, "Superconducting quantum node for entanglement and storage of microwave radiation," Physical Review Letters, Vol. 114, No. 9, 090503, 2015.
doi:10.1103/PhysRevLett.114.090503
16. Menzel, E. P., R. Di Candia, F. Deppe, P. Eder, L. Zhong, M. Ihmig, M. Haeberlein, A. Baust, E. Hoffmann, D. Ballester, and others, "Path entanglement of continuous-variable quantum microwaves," Physical Review Letters, Vol. 109, No. 25, 250502, 2012.
doi:10.1103/PhysRevLett.109.250502
17. Ku, H. S., W. F. Kindel, F. Mallet, S. Glancy, K. D. Irwin, G. C. Hilton, L. R. Vale, and K. W. Lehnert, "Generating and verifying entangled itinerant microwave fields with efficient and independent measurements," Physical Review A, Vol. 91, No. 4, 042305, 2015.
doi:10.1103/PhysRevA.91.042305
18. Fedorov, Kirill G., L. Zhong, S. Pogorzalek, P. Eder, M. Fischer, J. Goetz, E. Xie, F. Wulschner, K. Inomata, T. Yamamoto, and others, "Displacement of propagating squeezed microwave states," Physical Review Letters, Vol. 117, No. 2, 020502, 2016.
doi:10.1103/PhysRevLett.117.020502
19. Fedorov, Kirill G., S. Pogorzalek, U. Las Heras, M. Sanz, P. Yard, P. Eder, M. Fischer, J. Goetz, E. Xie, K. Inomata, and others, "Finite-time quantum entanglement in propagating squeezed microwaves," Scientific Reports, Vol. 8, No. 1, 6416, 2018.
doi:10.1038/s41598-018-24742-z
20. Westig, M, Bjorn Kubala, Olivier Parlavecchio, Yury Mukharsky, Carles Altimiras, Philippe Joyez, Denis Vion, Patrice Roche, Daniel Esteve, Max Hofheinz, and others, "Emission of nonclassical radiation by inelastic cooper pair tunneling," Physical Review Letters, Vol. 119, No. 13, 137001, 2017.
doi:10.1103/PhysRevLett.119.137001
21. Grimsmo, Arne L. and Alexandre Blais, "Squeezing and quantum state engineering with josephson travelling wave amplifiers," Npj Quantum Information, Vol. 3, No. 1, 20, 2017.
doi:10.1038/s41534-017-0020-8
22. Tan, Si-Hui, Baris I. Erkmen, Vittorio Giovannetti, Saikat Guha, Seth Lloyd, Lorenzo Maccone, Stefano Pirandola, and Jeffrey H. Shapiro, "Quantum illumination with gaussian states," Physical Review Letters, Vol. 101, No. 25, 253601, 2008.
doi:10.1103/PhysRevLett.101.253601
23. Assouly, Reouven, Remy Dassonneville, Theau Peronnin, Audrey Bienfait, and Benjamin Huard, "Demonstration of quantum advantage in microwave quantum radar," arXiv:2211.05684v1, 2022.
24. Macklin, C., K. O'Brien, D. Hover, M. E. Schwartz, V. Bolkhovsky, X. Zhang, W. D. Oliver, and I. Siddiqi, "A near–quantum-limited josephson traveling-wave parametric amplifier," Science, Vol. 350, No. 6258, 307-310, 2015.
doi:10.1126/science.aaa8525
25. Planat, Luca, Arpit Ranadive, Remy Dassonneville, Javier Puertas Martinez, Sebastien Leger, Cecile Naud, Olivier Buisson, Wiebke Hasch-Guichard, Denis M. Basko, and Nicolas Roch, "Photonic-crystal josephson traveling-wave parametric amplifier," Physical Review X, Vol. 10, No. 2, 021021, 2020.
doi:10.1103/PhysRevX.10.021021
26. Livreri, Patrizia, Emanuele Enrico, Luca Fasolo, Angelo Greco, Alessio Rettaroli, David Vitali, Alfonso Farina, Com F. Marchetti, and A. Sq. D. Giacomin, "Microwave quantum radar using a josephson traveling wave parametric amplifier," 2022 IEEE Radar Conference (RadarConf22), 1-5, New York City, NY, USA, 2022.
27. Livreri, Patrizia, Emanuele Enrico, David Vitali, and Alfonso Farina, "Microwave quantum radar using a josephson traveling wave parametric amplifier and a phase-conjugate receiver for a long-distance detection," 2023 IEEE Radar Conference (RadarConf23), 1-5, San Antonio, TX, USA, 2023.
28. Luong, David, Sreeraman Rajan, and Bhashyam Balaji, "Quantum two-mode squeezing radar and noise radar: correlation coefficients for target detection," IEEE Sensors Journal, Vol. 20, No. 10, 5221-5228, 2020.
doi:10.1109/JSEN.2020.2971851
29. Qiu, Jack Y., Arne Grimsmo, Kaidong Peng, Bharath Kannan, Benjamin Lienhard, Youngkyu Sung, Philip Krantz, Vladimir Bolkhovsky, Greg Calusine, David Kim, and others, "Broadband squeezed microwaves and amplification with a josephson travelling-wave parametric amplifier," Nature Physics, Vol. 19, No. 5, 706-713, 2023.
30. Van Trees, Harry L., Detection, Estimation, and Modulation Theory, Part I: Detection, Estimation, and Linear Modulation Theory, New York, NY, USA, John Wiley & Sons, 2004.
31. Helstrom, Carl W., "Quantum detection and estimation theory," Journal of Statistical Physics, Vol. 1, 231-252, 1969.
doi:10.1007/BF01007479
32. Mollow, B. R. and R. J. Glauber, "Quantum theory of parametric amplification. I," Physical Review, Vol. 160, No. 5, 1076, 1967.
doi:10.1103/PhysRev.160.1076
33. Kroll, Norman M., "Parametric amplification in spatially extended media and application to the design of tuneable oscillators at optical frequencies," Physical Review, Vol. 127, No. 4, 1207, 1962.
doi:10.1103/PhysRev.127.1207
34. Kingston, R. H., "Parametric amplification and oscillation at optical frequencies," Proceedings of The Institute of Radio Engineers, Vol. 50, No. 4, 472, 1962.
35. Akhmanov, S. A. and R. V. Khokhlov, "Concerning one possibility of amplification of light waves," Sov. Phys. Jetp, Vol. 16, 252-257, 1963.
36. Josephson, Brian David, "Possible new effects in superconductive tunnelling," Physics Letters, Vol. 1, No. 7, 251-253, 1962.
doi:10.1016/0031-9163(62)91369-0
37. Yurke, Bernard, L. R. Corruccini, P. G. Kaminsky, L. W. Rupp, A. D. Smith, A. H. Silver, R. W. Simon, and E. A. Whittaker, "Observation of parametric amplification and deamplification in a josephson parametric amplifier," Physical Review A, Vol. 39, No. 5, 2519, 1989.
doi:10.1103/PhysRevA.39.2519
38. Malnou, Maxime, Joe Aumentado, M. R. Vissers, J. D. Wheeler, Johannes Hubmayr, J. N. Ullom, and Jiansong Gao, "Performance of a kinetic inductance traveling-wave parametric amplifier at 4 kelvin: toward an alternative to semiconductor amplifiers," Physical Review Applied, Vol. 17, No. 4, 044009, 2022.
doi:10.1103/PhysRevApplied.17.044009
39. Aumentado, Jose, "Superconducting parametric amplifiers: the state of the art in josephson parametric amplifiers," IEEE Microwave Magazine, Vol. 21, No. 8, 45-59, 2020.
doi:10.1109/MMM.2020.2993476
40. Perelshtein, M. R., K. V. Petrovnin, Visa Vesterinen, Sina Hamedani Raja, Ilari Lilja, Marco Will, Alexander Savin, Slawomir Simbierowicz, Robab Najafi Jabdaraghi, Janne S Lehtinen, and others, "Broadband continuous-variable entanglement generation using a kerr-free josephson metamaterial," Physical Review Applied, Vol. 18, No. 2, 024063, 2022.
doi:10.1103/PhysRevApplied.18.024063
41. Esposito, Martina, Arpit Ranadive, Luca Planat, and Nicolas Roch, "Perspective on traveling wave microwave parametric amplifiers," Applied Physics Letters, Vol. 119, No. 12, 2021.
doi:10.1063/5.0064892
42. O’Brien, Kevin, Chris Macklin, Irfan Siddiqi, and Xiang Zhang, "Resonant phase matching of josephson junction traveling wave parametric amplifiers," Physical Review Letters, Vol. 113, No. 15, 157001, 2014.
doi:10.1103/PhysRevLett.113.157001
43. Frattini, N. E., V. V. Sivak, A. Lingenfelter, S. Shankar, and M. H. Devoret, "Optimizing the nonlinearity and dissipation of a snail parametric amplifier for dynamic range," Physical Review Applied, Vol. 10, No. 5, 054020, 2018.
doi:10.1103/PhysRevApplied.10.054020
44. Caves, Carlton M., "Quantum limits on noise in linear amplifiers," Physical Review D, Vol. 26, No. 8, 1817, 1982.
doi:10.1103/PhysRevD.26.1817
45. Castellanos-Beltran, Manuel A., K. D. Irwin, G. C. Hilton, L. R. Vale, and K. W. Lehnert, "Amplification and squeezing of quantum noise with a tunable josephson metamaterial," Nature Physics, Vol. 4, No. 12, 929-931, 2008.
doi:10.1038/nphys1090
46. Clerk, Aashish A., Michel H. Devoret, Steven M. Girvin, Florian Marquardt, and Robert J. Schoelkopf, "Introduction to quantum noise, measurement, and amplification," Reviews of Modern Physics, Vol. 82, No. 2, 1155-1208, 2010.
doi:10.1103/RevModPhys.82.1155
47. Cullen, A. L., "Theory of the travelling-wave parametric amplifier," Proceedings of The Iee-part B: Electronic and Communication Engineering, Vol. 107, No. 32, 101-107, 1960.
doi:10.1049/pi-b-2.1960.0085
48. Naaman, Ofer and Jose Aumentado, "Synthesis of parametrically coupled networks," PRX Quantum, Vol. 3, No. 2, 020201, 2022.
doi:10.1103/PRXQuantum.3.020201
49. Malnou, Maxime and Jose Aumentado, "Deconstructing the traveling wave parametric amplifier," IEEE Transactions on Microwave Theory and Techniques, Vol. 72, No. 4, 2158-2167, 2024.
doi:10.1109/TMTT.2024.3367176
50. Greco, Angelo, Luca Fasolo, Alice Meda, Luca Callegaro, and Emanuele Enrico, "Quantum model for rf-squid-based metamaterials enabling three-wave mixing and four-wave mixing traveling-wave parametric amplification," Physical Review B, Vol. 104, No. 18, 184517, 2021.
doi:10.1103/PhysRevB.104.184517
51. Macklin, Chris, K. O'brien, D. Hover, M. E. Schwartz, V. Bolkhovsky, X. Zhang, W. D. Oliver, and I. Siddiqi, "A near-quantum-limited josephson traveling-wave parametric amplifier," Science, Vol. 350, No. 6258, 307-310, 2015.
doi:10.1126/science.aaa8525
52. Wustmann, Waltraut and Vitaly Shumeiko, "Parametric resonance in tunable superconducting cavities," Physical Review B --- Condensed Matter and Materials Physics, Vol. 87, No. 18, 184501, 2013.
doi:10.1103/PhysRevB.87.184501
53. Plenio, Martin B. and Susana F. Huelga, "Dephasing-assisted transport: quantum networks and biomolecules," New Journal of Physics, Vol. 10, No. 11, 113019, 2008.
doi:10.1088/1367-2630/10/11/113019
54. Eichler, Christopher, Deniz Bozyigit, Christian Lang, Martin Baur, Lars Steffen, Johannes M. Fink, Stefan Filipp, and Andreas Wallraff, "Observation of two-mode squeezing in the microwave frequency domain," Physical Review Letters, Vol. 107, No. 11, 113601, 2011.
doi:10.1103/PhysRevLett.107.113601
55. Kraus, Karl, "General state changes in quantum theory," Annals of Physics, Vol. 64, No. 2, 311-335, 1971.
doi:10.1016/0003-4916(71)90108-4
56. Adesso, Gerardo and Fabrizio Illuminati, "Entanglement in continuous-variable systems: recent advances and current perspectives," Journal of Physics A: Mathematical and Theoretical, Vol. 40, No. 28, 7821, 2007.
doi:10.1088/1751-8113/40/28/S01
57. Dolinar, S. J., "Optimum detection of coherent electromagnetic radiation," Ph.D. dissertation, Stanford Univ., Stanford, CA, USA, 1973.
58. Guha, S., "Quantum-enhanced sensing," Phys. Rev. A, Vol. 94, 012108, 2016.
59. Shi, H., J. H. Shapiro, and Z. Zhang, "Practical quantum radar and lidar: physics, principles, and techniques," J. Opt., Vol. 25, 013002, 2023.
60. Reichert, L., A. Ferri, S. T. Johansen, C. Lupo, R. Elgharib, M. R. Vissers, L. Frunzio, M. H. Devoret, L. P. Pryadko, and A. A. Houck, "Quantum-enhanced sensing and readout of microwave resonators," Phys. Rev. Res., Vol. 5, 023137, 2023.
61. Skolnik, Merrill Ivan and others, Introduction to Radar Systems, 2 Ed., Vol. 3, McGraw-Hill, 1980.
62. Luong, D. and B. Balaji, "Quantum radar with gaussian states and non-gaussian detectors: sensitivity and performance," IEEE Trans. on Aerospace and Electronic Systems, Vol. 58, 4239-4257, 2022.
63. Mahafza, Bassem R., Radar Systems Analysis and Design Using MATLAB, 4 Ed., CRC Press, Boca Raton, FL, USA, 2022.
doi:10.1201/9781003051282
64. Norouzi, M. and J. D. Saari, "Quantum radar: State of the art and new avenues," IEEE Aerospace and Electronic Systems Magazine, Vol. 38, 62-76, 2023.
65. Barzanjeh, Shabir, Stefano Pirandola, David Vitali, and Johannes M. Fink, "Microwave quantum illumination using a digital receiver," Science Advances, Vol. 6, No. 19, eabb0451, 2020.
doi:10.1126/sciadv.abb0451
66. Fasolo, L., C. Barone, M. Borghesi, G. Carapella, A. P. Caricato, I. Carusotto, Woohyun Chung, A. Cian, D. Di Gioacchino, E. Enrico, and others, "Bimodal approach for noise figures of merit evaluation in quantum-limited josephson traveling wave parametric amplifiers," IEEE Transactions on Applied Superconductivity, Vol. 32, No. 4, 1-6, 2022.
doi:10.1109/TASC.2022.3148692