Vol. 118
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2024-03-20
A Modified Sparsified Nested Dissection Ordering Preconditioner for Discrete Exterior Calculus Solver Using Vector-Scalar Potentials
By
Progress In Electromagnetics Research Letters, Vol. 118, 79-83, 2024
Abstract
A broadband preconditioner based on a modified version of the sparsified nested dissection ordering (m-spaNDO) technique is proposed for the full wave discrete exterior calculus (DEC) A-Φformulation solver in electromagnetics. The matrix equation discretized by the DEC A-Φ solver is in general complex symmetric and indefinite. When conductive media and disparate mesh are involved, the DEC A-Φ matrix equation is ill-conditioned, and proper preconditioner must be utilized to accelerate iterative solver convergence. In this letter, an introduction to the DEC A-Φ solver is provided, followed by the implementation details of the m-spaNDO preconditioner. Numerical examples in this paper show that the proposed m-spaNDO preconditioner can effectively accelerate the convergence of iterative solvers in solving ill-conditioned problems. The m-spaNDO preconditioned DEC A-Φ solver has O(N logN) computational complexity and the efficiency of the preconditioner is independent of change in parameters such as frequency and conductivity in the problem, which indicates the broadband stable nature of the m-spaNDO preconditioner.
Citation
Boyuan Zhang, and Weng Cho Chew, "A Modified Sparsified Nested Dissection Ordering Preconditioner for Discrete Exterior Calculus Solver Using Vector-Scalar Potentials," Progress In Electromagnetics Research Letters, Vol. 118, 79-83, 2024.
doi:10.2528/PIERL24021306
References

1. Chew, Weng Cho, "Vector potential electromagnetics with generalized gauge for inhomogeneous media: Formulation," Progress In Electromagnetics Research, Vol. 149, 69-84, 2014.

2. Zhang, Boyuan, Dong-Yeop Na, Dan Jiao, and Weng Cho Chew, "An A-Φ formulation solver in electromagnetics based on discrete exterior calculus," IEEE Journal on Multiscale and Multiphysics Computational Techniques, Vol. 8, 11-21, 2022.

3. Zhao, Yanpu and W. N. Fu, "A new stable full-wave Maxwell solver for all frequencies," IEEE Transactions on Magnetics, Vol. 53, No. 6, 1-4, 2017.

4. Hestenes, Magnus R. and Eduard Stiefel, "Methods of conjugate gradients for solving linear systems," Journal of Research of the National Bureau of Standards, Vol. 49, No. 6, 409-436, 1952.
doi:10.6028/jres.049.044

5. Fletcher, Roger, "Conjugate gradient methods for indefinite systems," Numerical Analysis: Proceedings of the Dundee Conference on Numerical Analysis, 73-89, Berlin, Heidelberg, 1976.

6. Saad, Youcef and Martin H. Schultz, "GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems," SIAM Journal on Scientific and Statistical Computing, Vol. 7, No. 3, 856-869, 1986.

7. Chew, W. C., "Computational electromagnetics: The physics of smooth versus oscillatory fields," Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, Vol. 362, No. 1816, 579-602, 2004.

8. Chai, Wenwen and Dan Jiao, "Theoretical study on the rank of integral operators for broadband electromagnetic modeling from static to electrodynamic frequencies," IEEE Transactions on Components, Packaging and Manufacturing Technology, Vol. 3, No. 12, 2113-2126, 2013.

9. Cambier, Léopold, Chao Chen, Erik G. Boman, Sivasankaran Rajamanickam, Raymond S. Tuminaro, and Eric Darve, "An algebraic sparsified nested dissection algorithm using low-rank approximations," SIAM Journal on Matrix Analysis and Applications, Vol. 41, No. 2, 715-746, 2020.
doi:10.1137/19M123806X

10. Ambikasaran, S., "Fast algorithms for dense numerical linear algebra and applications," Stanford University, Stanford, CA, 2013.

11. Chandrasekaran, Shiv, Patrick Dewilde, Ming Gu, T. Pals, Xiaorui Sun, Alle-Jan van der Veen, and Daniel White, "Some fast algorithms for sequentially semiseparable representations," SIAM Journal on Matrix Analysis and Applications, Vol. 27, No. 2, 341-364, 2005.

12. Ho, Kenneth L. and Lexing Ying, "Hierarchical interpolative factorization for elliptic operators: Differential equations," Communications on Pure and Applied Mathematics, Vol. 69, No. 8, 1415-1451, 2016.

13. Chew, Weng Cho and C.-C. Lu, "The use of Huygens' equivalence principle for solving the volume integral equation of scattering," IEEE Transactions on Antennas and Propagation, Vol. 41, No. 7, 897-904, 1993.

14. Taflove, Allen, Susan C. Hagness, and Melinda Piket-May, "Computational electromagnetics: The finite-difference time-domain method," The Electrical Engineering Handbook, Vol. 3, 629-670, 2005.

15. Jin, Jian-Ming, The Finite Element Method in Electromagnetics, John Wiley & Sons, 2015.

16. George, Alan, "Nested dissection of a regular finite element mesh," SIAM Journal on Numerical Analysis, Vol. 10, No. 2, 345-363, 1973.

17. Deschamps, Georges A., "Electromagnetics and differential forms," Proceedings of the IEEE, Vol. 69, No. 6, 676-696, 1981.
doi:10.1109/PROC.1981.12048

18. Desbrun, Mathieu, Anil N. Hirani, Melvin Leok, and Jerrold E. Marsden, "Discrete exterior calculus," arXiv:math.DG/0508341, 2005.

19. Klema, Virginia and Alan Laub, "The singular value decomposition: Its computation and some applications," IEEE Transactions on Automatic Control, Vol. 25, No. 2, 164-176, 1980.

20. Halko, Nathan, Per-Gunnar Martinsson, and Joel A. Tropp, "Finding structure with randomness: Probabilistic algorithms for constructing approximate matrix decompositions," SIAM Review, Vol. 53, No. 2, 217-288, 2011.
doi:10.1137/090771806

21. Chan, Tony F., "Rank revealing QR factorizations," Linear Algebra and Its Applications, Vol. 88, 67-82, 1987.