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ABSTRACT: A broadband preconditioner based on a modified version of the sparsified nested dissection ordering (m-spaNDO) technique
is proposed for the full wave discrete exterior calculus (DEC)A-Φ formulation solver in electromagnetics. Thematrix equation discretized
by the DEC A-Φ solver is in general complex symmetric and indefinite. When conductive media and disparate mesh are involved, the
DEC A-Φ matrix equation is ill-conditioned, and proper preconditioner must be utilized to accelerate iterative solver convergence. In
this letter, an introduction to the DEC A-Φ solver is provided, followed by the implementation details of the m-spaNDO preconditioner.
Numerical examples in this paper show that the proposedm-spaNDOpreconditioner can effectively accelerate the convergence of iterative
solvers in solving ill-conditioned problems. The m-spaNDO preconditioned DECA-Φ solver hasO(N logN) computational complexity
and the efficiency of the preconditioner is independent of change in parameters such as frequency and conductivity in the problem, which
indicates the broadband stable nature of the m-spaNDO preconditioner.

1. INTRODUCTION

The A-Φ formulation in electromagnetics is under active
study [1–3], whereA andΦ are the vector and scalar poten-

tial of the electromagnetic field, respectively. Compared with
traditionalE-H formulation, theA-Φ formulation is free of low-
frequency breakdown, thanks to the additional gauge term that
removes the null space of the double curl operator. Recently,
a numerical A-Φ formulation solver based on discrete exterior
calculus (DEC) is proposed, which showed its broadband sta-
bility from DC to optics [2]. Thus, the DECA-Φ solver is ideal
for broadband and multi-scale analysis, where static physics
and wave physics could co-exist in the same problem and re-
quire the same solution accuracy. To make the DECA-Φ solver
capable of solving large scale problems, iterative solvers, such
as the conjugate gradient (CG)method [4], biconjugate gradient
(BiCG) method [5] and generalized minimal residual method
(GMRES) [6], are preferred over direct solvers. This is be-
cause the error minimization mechanism in the iterative solvers
allows user to control the effect of numerical error to the solu-
tion accuracy. However, when conductive media or disparate
mesh in multi-scale structures are involved, the matrix equation
discretized by the DEC A-Φ solver is ill-conditioned, and the
iterative solvers converge very slowly or even fail to converge.
In such cases, proper preconditioners are needed to accelerate
the convergence of iterative solvers. Meanwhile, consider the
broadband nature of the DEC A-Φ solver, the preconditioner
should also be broadband in nature, i.e., its efficiency should
be insensitive to change in parameters such as frequency and
conductivity in the problem.
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The construction of preconditioners is usually problem de-
pendent. Due to the smoothness of the Green’s function of
electromagnetic wave equations [7], the coupling between sep-
arated structures is usually low-rank. In other words, in inte-
gral equation solvers, such as the method of moments (MoM),
the resultant coupling matrix has low-rank off-diagonal mu-
tual coupling blocks [8, 9]. One popular way to construct pre-
conditioners is by compressing the low-rank off-diagonal ma-
trix blocks, find the approximate inverse of the coupling ma-
trix using fast arithmetics such as the hierarchical matrices (H-
matrices). The approximate inverse of the coupling matrix can
be used as a preconditioner to the original matrix system. De-
pending on the compression technique utilized, such methods
include the hierarchical off-diagonal low-rank (HODLR) for-
mat method [10], the hierarchically semiseparable (HSS) ma-
trices [11] and the hierarchical interpolative factorization (HIF)
method [12].
Different from the integral equation solver, where the dis-

cretized matrix is dense, the DEC A-Φ solver is a differen-
tial equation solver with sparse matrix system. However, by
eliminating the interior unknowns in the computational domain,
the remaining unknowns and their coupling are pushed to the
boundary. The corresponding coupling matrix after interior un-
known elimination is much denser, and shares similar physics
with integral equation solver matrices [13]. In [9], a sparsified
nested dissection ordering (spaNDO) algorithm is proposed as
a preconditioner to the real symmetric positive definite matrix
system discretized by differential equation solver, such as fi-
nite difference method (FDM) [14] and finite element method
(FEM) [15].
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The sparsity pattern of the matrix equation discretized by dif-
ferential equation solvers can be determined by the mesh in-
formation. Nested dissection ordering (NDO) algorithm takes
advantage of the sparsity pattern information of the coupling
matrix, creates separators in the computational domain and re-
orders the unknowns in the problem accordingly [16]. As a
direct matrix equation solver, the computational complexity of
NDO for factorizing the matrix system is O(N2), where N is
the number of unknowns. In contrast, if one uses regular factor-
ization method, such as the LU decomposition or the Gaussian
elimination method, the computational complexity is O(N3).
Although the O(N2) complexity of NDO is proved to be the
optimal complexity of direct solvers, it still makes the problem
expensive when N gets large.
To further reduce the computational complexity, low-rank

approximation can be introduced in NDO [9]. After the interior
unknowns are eliminated, the remaining separator unknowns
coupling is similar to an integral equation where the numerical
Green’s function is buried in the matrix. In electromagnetics,
the coupling between separated objects is rank deficient [7, 8].
Thus, the off-diagonal mutual coupling blocks are low-rank and
can be compressed to accelerate the computation of the approx-
imate inverse of the coupling matrix. The spaNDO precondi-
tioner in [9] effectively accelerates the convergence of iterative
solvers in solving real symmetric positive definite matrix sys-
tems with O(N logN) complexity. Such matrix systems are
often encountered in mechanical systems. However, in com-
putational electromagnetic (CEM) problems, when conductive
medium is involved, the matrix system is not real-valued any-
more. The DECA-Φmatrix system is in general complex sym-
metric and indefinite. Thus, the spaNDO preconditioner in [9]
cannot be used directly to the DEC A-Φ solver.
In this letter, a modified version of the spaNDO (m-spaNDO)

is proposed, which works as an efficient preconditioner to
the complex symmetric (non-Hermitian) matrix systems dis-
cretized by the DEC A-Φ solver. The m-spaNDO precondi-
tioner showed O(N logN) computational complexity, and its
efficiency is independent of frequency and conductivity param-
eters in the problems, which indicates its broadband property.
The rest of the paper is organized as follows. In Section 2, in-
troduction to the m-spaNDO preconditioned DEC A-Φ solver
is provided. In Section 3, numerical examples are presented
to illustrate the complexity and broadband efficiency of the m-
spaNDO preconditioner. In Section 4, discussion and conclu-
sion of this letter are given.

2. THE m-spaNDO PRECONDITIONED DEC A-Φ
SOLVER

2.1. The DEC A-Φ Solver
The A-Φ formulation with generalized Lorenz gauge is [1]:

∇× 1

µ
∇× A− ω2ϵ̃A− ϵ̃∇

[
χ−1∇ · (ϵ̃A)

]
= Jim, (1)

∇ · (ϵ̃∇Φ) + ω2χΦ = −ϱim, (2)

where A and Φ are the vector and scalar potential of the elec-
tromagnetic field, respectively; Jim and ϱim are the impressed
current density and impressed charge density, respectively; ω is
the angular frequency; µ is the permeability; ϵ̃ = ϵ + iσ

ω is the
complex permittivity; ϵ and σ are the permittivity and conduc-
tivity, respectively; χ = αµϵ̃2 and α is an arbitrary non-zero
constant. The generalized Lorenz gauge is used to decouple the
A and Φ equations [1]:

∇ · (ϵ̃A) = iωχΦ. (3)

Eqs. (1) and (2) can be discretized by using DEC [2, 17, 18]
with tetrahedral mesh, which generates the matrix equations:(

d(1)
)T

⋆
(2)
µ−1d

(1)A− ω2⋆(1)ϵ A

+⋆(1)ϵ d(0)⋆(3)χ−1

(
d(0)

)T

⋆(1)ϵ A = J, (4)

−
(
d(0)

)T

⋆(1)ϵ d(0)Φ+ ω2⋆(0)χ Φ = −ϱ. (5)

where A = [A1, A2, · · · , AN1
]T is the vector that contains

the vector potential unknowns Ai on each edge in the mesh;
Φ = [Φ1,Φ2, · · · ,ΦN0

]T is the vector that contains the scalar
potential unknowns Φi on each node in the mesh; N1 and N0

are the total number of edges and nodes in the mesh.

Matrices d(0) and d(1) are called incidence matrices which
are the discrete representations of the gradient and curl opera-
tors on the primal mesh, respectively. They can be constructed
by using the connectivity information in the mesh.

⋆
(1)
ϵ , ⋆(2)µ−1 and ⋆(0)χ are the Galerkin Hodge star operators rep-

resenting the constitutive relations. For simplicity of this letter,
the details are omitted but can be found in [2].

2.2. Nested Dissection Ordering in DEC A-Φ Solver
In this section, (4) is used as an example to demonstrate how
to construct its m-spaNDO preconditioner. (4) can be written
compactly as:

MA = J, (6)
whereM is the coupling matrix among the unknowns inA. The
sparsity pattern ofM can be determined from the mesh connec-
tivity information. By usingNDO, separators are constructed in
the computational domain, and unknowns are reordered accord-
ingly. A separator in NDO is comprised of a set of unknowns.
By removing the edges associated with the separator unknowns
from the mesh, the remaining unknowns form two clusters that
are decoupled from each other [9, 16]. Fig. 1 shows an example
of NDO separator in 2D case, where the unknown set A3 is the
separator, A1 and A2 are two decoupled unknown clusters that
are separated by A3. Accordingly, the unknowns in vector A
in (6) are reordered as:

A = [A1, A2, A3]
T
. (7)

Since A1 and A2 are decoupled,M has the following structure:

M =

M11 0 M13

0 M22 M23

M31 M32 M33

 , (8)
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whereMii is the self-coupling matrix among unknowns in Ai,
and the off-diagonal blocks represent the mutual couplings.
Unknown sets A1, A2 and A3 are eliminated successively in
a divide-and-defeat (DaD) fashion, which introduces minimum
matrix element fill-ins in the elimination procedure [9]. This is
the key reason that NDO can achieve the optimal O(N2) com-
plexity as a direct solver.

FIGURE 1. The construction of a NDO separator in 2D case.

Different levels of separators in NDO can be constructed re-
cursively. Fig. 2 illustrates the procedure of constructing two
levels of separators in 2D case. After the top level separator is
constructed in Fig. 2(b), two l = 2 level separators are further
constructed in each of the subregions in Fig. 2(c).
(a) (b) (c)

l = 0 l = 1 l = 2

FIGURE 2. An example of constructing different levels of separators in
2D case. (a) The original computational domain. (b) The l = 1 level
separator. (c) The l = 2 level separators.

Accordingly, Fig. 3 shows the elimination tree associated
with the NDO separator in Fig. 2(c). There are four leaf-level
unknown clusters, which correspond to the four ‘white spaces’
in Fig. 2(c). The three circle nodes in the elimination tree cor-
respond to the three separators in Fig. 2(c).

FIGURE 3. The elimination tree associated with the NDO separator in
Fig. 2(c).

After the unknowns in A in (6) are reordered following the
NDO separation, elimination of unknowns should be performed
from bottom level to top level in the elimination tree, i.e., from
leaf-level clusters to the top level separator cluster [9, 16].

2.3. The Modified Version of spaNDO Preconditioner
After the elimination of the leaf-level unknown clusters, (6) be-
comes

MsAs = Js, (9)
where As only contains the separator unknowns, and Ms is a
dense matrix that represents the couplings among the separa-
tor unknowns. Note thatMs has similar physics as the matrix
discretized by integral equation solvers. Thus, the off-diagonal
blocks inMs, which represent the mutual couplings of the sep-
arator clusters, are low-rank. By exploiting the low-rank nature
of the off-diagonal blocks, the approximate inverse ofMs can
be computed with much cheaper computational cost.
When eliminating a certain separator clusterAa, one can con-

sider the following frontal matrix extracted fromMs:

M̃ =

[
Maa Mab

Mba Mbb

]
, (10)

whereMaa is the self-coupling matrix among the unknowns in
separator Aa; Ab denotes all the unknowns in other separators
that couple to Aa. The meaning for Mab, Mba and Mbb are
self-explained.
Since Mab and Mba are low-rank, the following procedure

can be performed as the sparsified nested dissection ordering.
First, a scaling step with respect toMaa:

M̃→

[
I L−1Mab

MbaU
−1 Mbb

]
=

[
I Cab

Cba Mbb

]
= M̃1, (11)

where the LU decomposition, Maa = LU, is involved in the
above operation.
Second, one can perform methods such as singular value

decomposition (SVD) [19], randomized SVD [20], or rank-
revealing QR factorization [21] to Cab and Cba to explore their
low-rank property. Eventually, M̃1 in (11) can be transformed
into

M̃1→

Iff 0 Wf

0 Icc Wc

Nf Nc Mbb

≈

Iff 0 0
0 Icc Wc

0 Nc Mbb

=M̃2. (12)

In the above, it is assumed thatAa = [Af , Ac]
T , where the sub-

scripts f and c stand for fine and coarse, respectively, follow-
ing the terminology from [9]. The fine unknowns, whose self-
coupling matrix is Iff in (12), represent the redundant mutual
couplings among separators. Specifically, in (12), ||Wf ||row <
ξ||Wc||row and ||Nf ||col < ξ||Nc||col, where || · ||row and || · ||col
denote themaximum row norm and themaximum column norm
of a matrix, respectively; ξ is the prescribed tolerance chosen
for the low-rank approximation (LRA).
Apparently, the fine unknowns Af are approximately elim-

inated without introducing any element fill-ins toMbb in (12).
This sparsification step can be performed with respect to each
separator before eliminating a certain level of separators. It is
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(b)(a)

FIGURE 4. (a) Dimension of the rectangular wire loop and (b) the wire loop is placed in dielectric region.

FIGURE 5. Summary of the total computation time and BiCG iteration
steps of the proposed m-spaNDO preconditioned DEC A-Φ solver.

FIGURE 6. Study on the efficiency of the m-spaNDO preconditioned
DEC A-Φ solver with different frequencies and conductivities.

equivalent to reducing the number of unknowns in each sep-
arator with very small computational cost. Thus, the compu-
tational complexity of the m-spaNDO is greatly reduced com-
pared to that of NDO.
A theoretical analysis of the computational complexity of the

original spaNDO preconditioner is carried out in [9]. As the
m-spaNDO proposed in this letter shares the same basic steps
compared to the spaNDO in [9], it also has O(N logN) com-
plexity.

3. NUMERICAL EXAMPLE

A rectangular wire loop case is used as a numerical example to
validate the proposed m-spaNDO preconditioner. As shown in
Fig. 4, the wire loop is assumed to be copper with conductivity
σ = 5.8 × 107 S/m and is placed in air with ϵr = 1. The
frequency of the impressed current source is f = 1GHz. In
this case, the complex permittivity ϵ̃ in the copper region is 9
orders larger than that in the air region. The coupling matrixM
in (6) has humongous condition number due to the huge contrast
in ϵ̃. When using iterative solvers without preconditioning, it is
extremely slow, sometimes even impossible, for the iterative
solvers to converge.
As a contrast, the proposed m-spaNDO preconditioner is

constructed with respect to the rectangular wire loop problem.

Biconjugate gradient (BiCG) method is used as the iterative
solver. Fig. 5 summarizes the total computation time and BiCG
iteration steps of the proposed m-spaNDO preconditioned DEC
A-Φ solver with different numbers of unknowns N . Here, the
total computation time includes the time cost in constructing the
m-spaNDO preconditioner and the BiCG iteration procedure.
The DECA-Φmatrix equation set up time, which is linear with
respect to N and is negligible compared to the solving time, is
excluded from the total time.
As can be seen from Fig. 5, the total computation time of the

m-spaNDO preconditioned DEC A-Φ solver fluctuates around
O(N logN) complexity. The reason for the fluctuation is that
when conducting the theoretical complexity analysis of NDO
and spaNDO,N is assumed to be a multiple of 2 [9]. To flatten
the fluctuation, one can construct more than one separator in
each subregion in Fig. 2, and accordingly, the elimination tree
in Fig. 3 is not binary anymore.
The sensitivity of the m-spaNDO preconditioning efficiency

to parameters such as frequency and conductivity in the prob-
lem is studied as well. Two frequencies are considered, f1 =
1GHz and f2 = 1 kHz, along with two conductivities of the
wire loop, σ1 = 5.8× 107 S/m and σ2 = 5.8× 102 S/m. Fig. 5
shows the total computation time of the m-spaNDO precondi-
tioned solver and the BiCG iterations in different cases. The
efficiency of the m-spaNDO preconditioned DEC A-Φ solver
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is almost independent of the frequency and conductivity in the
problem. This indicates the m-spaNDO preconditioner is stable
and broadband.

4. CONCLUSION
A modified version of the sparsified NDO (m-spaNDO) pre-
conditioner is proposed. The m-spaNDO preconditioner works
for the complex symmetric, indefinite matrix systems dis-
cretized from the DEC A-Φ solver. The m-spaNDO precon-
ditioner effectively accelerates the convergence of iterative
solvers in solving the DEC A-Φ matrix equations, especially
when conductive media and disparate mesh are involved. The
m-spaNDO preconditioned DEC A-Φ solver has O(N logN)
computational complexity, and its efficiency is independent of
parameters such as frequency and conductivity in the prob-
lem. Thus, the proposed m-spaNDO preconditioner can work
as an effective and broadband preconditioner for the DEC A-Φ
solver.
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