Vol. 126
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2024-03-31
A Stable and Efficient Interpolation Method for Two-Dimensional Periodic Green's Functions
By
Progress In Electromagnetics Research M, Vol. 126, 29-36, 2024
Abstract
This paper presents an efficient and stable interpolation method for calculating two-dimensional periodic Green's function and its gradient. The method consists of two steps: constructing an interpolation table in the first step and using linear interpolation to extract the desired Green's function from the interpolation table in the second step. In the construction of the interpolation table, several properties of the two-dimensional periodic Green's function are fully utilized, which minimize the size of the interpolation table. When the elements in the interpolation table are computed, all possible singular terms are removed, ensuring that the interpolation function maintains high linearity even under extreme skew periodic grids. This means that linear interpolation can guarantee sufficient accuracy. Numerical results demonstrate effectiveness of the proposed method, making it suitable for combining with numerical methods for electromagnetic field calculation and analysis of periodic structures.
Citation
Lian Feng Ma, Qing Guang Zhao, Chong Guo, and Yi Ren, "A Stable and Efficient Interpolation Method for Two-Dimensional Periodic Green's Functions," Progress In Electromagnetics Research M, Vol. 126, 29-36, 2024.
doi:10.2528/PIERM24020207
References

1. Munk, Ben A., Frequency Selective Surfaces: Theory and Design, John Wiley & Sons, 2005.

2. Amitay, Noach, Victor Galindo, and Chen Pang Wu, "Theory and analysis of phased array antennas," Theory and Analysis of Phased Array Antennas, 1972.

3. Holloway, Christopher L., Edward F. Kuester, Joshua A. Gordon, John O'Hara, Jim Booth, and David R. Smith, "An overview of the theory and applications of metasurfaces: The two-dimensional equivalents of metamaterials," IEEE Antennas and Propagation Magazine, Vol. 54, No. 2, 10-35, Apr. 2012.

4. Valerio, Guido, Paolo Baccarelli, Paolo Burghignoli, and Alessandro Galli, "Comparative analysis of acceleration techniques for 2-D and 3-D Green's functions in periodic structures along one and two directions," IEEE Transactions on Antennas and Propagation, Vol. 55, No. 6, 1630-1643, Jun. 2007.

5. Jordan, Kirk E., Gerard R. Richter, and Ping Sheng, "An efficient numerical evaluation of the Green's function for the Helmholtz operator on periodic structures," Journal of Computational Physics, Vol. 63, No. 1, 222-235, 1986.

6. Singh, Surendra and Ritu Singh, "On the use of Shank's transform to accelerate the summation of slowly converging series," IEEE Transactions on Microwave Theory and Techniques, Vol. 39, No. 3, 608-610, Mar. 1991.

7. Jorgenson, Roy E. and Raj Mittra, "Efficient calculation of the free-space periodic Green's function," IEEE Transactions on Antennas and Propagation, Vol. 38, No. 5, 633-642, May 1990.

8. Stevanovic, Ivica, Pedro Crespo-Valero, Katarina Blagovic, F. Bongard, and J. R. Mosig, "Integral-equation analysis of 3-D metallic objects arranged in 2-D lattices using the Ewald transformation," IEEE Transactions on Microwave Theory and Techniques, Vol. 54, No. 10, 3688-3697, Oct. 2006.

9. Dardenne, Xavier and Christophe Craeye, "Method of moments simulation of infinitely periodic structures combining metal with connected dielectric objects," IEEE Transactions on Antennas and Propagation, Vol. 56, No. 8, 2372-2380, Aug. 2008.

10. Hu, Fu-Gang and Jiming Song, "Integral-equation analysis of scattering from doubly periodic array of 3-D conducting objects," IEEE Transactions on Antennas and Propagation, Vol. 59, No. 12, 4569-4578, Dec. 2011.

11. Poppe, Gert P. M. and Christianus M. J. Wijers, "More efficient computation of the complex error function," ACM Transactions on Mathematical Software, Vol. 16, No. 1, 38-46, Mar. 1990.