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ABSTRACT: This paper presents an efficient and stable interpolation method for calculating two-dimensional periodic Green’s function
and its gradient. The method consists of two steps: constructing an interpolation table in the first step and using linear interpolation to
extract the desired Green’s function from the interpolation table in the second step. In the construction of the interpolation table, several
properties of the two-dimensional periodic Green’s function are fully utilized, which minimize the size of the interpolation table. When
the elements in the interpolation table are computed, all possible singular terms are removed, ensuring that the interpolation function
maintains high linearity even under extreme skew periodic grids. This means that linear interpolation can guarantee sufficient accuracy.
Numerical results demonstrate effectiveness of the proposed method, making it suitable for combining with numerical methods for
electromagnetic field calculation and analysis of periodic structures.

1. INTRODUCTION

In electromagnetic field analysis, Green’s function is the coreof many computational methods. In complex scenarios,
whether for analytical or numerical calculations, the efficient
estimation of Green’s functions often becomes a bottleneck that
limits the effectiveness of these computational methods. Two-
dimensional periodic Green’s function is the core for the anal-
ysis of two-dimensional periodic structures. As we know, two-
dimensional periodic structures have a wide range of applica-
tions, such as frequency-selective surfaces [1], phased array
antennas [2], and metasurfaces [3]. When the entire unit of a
two-dimensional periodic structure is analyzed, multiple calcu-
lations of periodic Green’s function are often required, so the
fast estimation of the two-dimensional periodic Green’s func-
tion within the entire periodic unit is particularly important.
The original form of two-dimensional periodic Green’s func-

tion is based on an infinite series of free-space Green’s func-
tions, which converges very slowly. To improve convergence
speed, accelerationmethods [4] such as the Ewald’smethod [5],
Shank’s transform [6], and Kummer’s decompositions [7] have
been proposed. However, even with these acceleration meth-
ods, the computational efficiency is still very low when field
calculations are performed within the entire periodic unit, such
as the calculation of matrix elements in method of moment
(MoM), which cannot meet the requirements of practical cal-
culations. Due to this reason, interpolation methods have
emerged.
Generally, in interpolation methods, the first step is to pre-

construct an interpolation table within the periodic unit. Then,
based on the relationship between the source point and obser-
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vation point, the Green’s function at the observation point is
obtained through interpolation from the interpolation table. In
existing publications on two-dimensional periodic MoM, inter-
polation methods are inevitably used [8–10]. However, these
publications [8–10] do not provide details on the construction
of interpolating table and interpolation schemes. Moreover, the
interpolation tables used in these publications are constructed
within the entire periodic unit and do not fully utilize the prop-
erties of the periodic Green’s function. In this paper, we will
demonstrate that it is not necessary to construct the interpola-
tion table within the entire unit. In fact, by using suitable trans-
formations and interpolations, constructing the interpolation ta-
ble within a quarter of the unit is sufficient to be used to obtain
the Green’s function values at any position of the entire unit.
This paper is organized as follows. Section 2 introduces the

calculation of the periodic Green’s function based on the Ewald
method. Section 3 presents the construction of the interpola-
tion table and interpolation scheme. Section 4 provides two
numerical examples to illustrate the effectiveness of the pro-
posed method. In, Section 5, conclusions are provided.

2. PERIODIC GREEN'S FUNCTION
In this section, we introduce the expressions for the periodic
Green’s function and its gradient.
Let us consider the periodic structure shown in Figure 1. In

the figure, U represents the space under study, which com-
pletely encloses the periodic structure unit. SU is the trans-
verse area of U. Within U, R represents the vector from the
real source point to the observation point, r (x, y, z) the posi-
tion of the observation point, and r′ (x′, y′, z′) the position of
the real source point. a1 and a2 are the unit direction vectors in
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FIGURE 1. 3D objects arranged in 2D periodic lattices.

the two periodic directions. ρnm is the position vector of the
(n,m)th periodic unit relative to U, and Rnm is the position
vector from the virtual source point inside the (n,m)th peri-
odic unit to the observation point inside U. It should be noted
that U is the (0, 0)th unit, with its transverse section parallel to
the xoy plane and its longitudinal direction parallel to the z-axis.
Based on the Floquet theorem, the expression for the periodic

Green’s function Gp in terms of a series of the image Green’s
function can be written as follows [8].

Gp (r, r′) = Gp (R) =
1

4π

∑
n,m

e−jkRnm

Rnm
e−jβ0·ρnm (1)

Notice that k is the wave number of interested region while β0

denotes the phase constant vector in free space.
The convergence of above series is very slow. The Ewald

method is the most widely used method to accelerate the con-
vergence of (1), thus in this paper we adopt the Ewald method
to expand Gp. By separating Gp into the spatial-domain part
Gspat and the spectral-domain part Gspec, the new expression
in series is as follows [8].

Gp (R) = Gspat (R) +Gspec (R) (2)

Gspat (R) =
1

8π

∑
n,m

e−jβ0·ρnm

Rnm

∑
±

e±jkRnm

·erfc
(
RnmE ± jk

2E

)
(3)

Gspec (R) =
1

4SU

∑
n,m

e−jkt(n,m)·R

jkz (n,m)

·
∑
±

e±jZkz(n,m)erfc
(
jkz (n,m)

2E
±ZE

)
(4)

In above equations

erfc (z) = 1− 2√
π

∫ z

0

e−ξ2dξ (5)

X = x− x′, Y = y − y′, Z = z − z′ (6)
γ = α+ jβ = jk (7)

kt (n,m) = x̂
{[

βx0+2π

(
n

a1 cosϕ
− m sinϕ
a2 cosϕ

)]
−jαx

}

+ŷ
[(

βy0 + 2π
m

a2

)
− jαy

]
(8)

kz (n,m) =
√

k2 − kt (n,m) · kt (n,m) (9)

E = max
(√

π

SU
,
k

2H

)
(10)

where erfc(·) is the complex error function, and the numerical
evaluation of erfc(·) can be found in [11]. E is the splitting
parameter, and in (10) H2 is the maximum exponent permit-
ted [8].
In numerical algorithms, there are cases where we also need

to use the gradient of the Green’s function. The gradient of the
two-dimensional periodic Green’s function based on the Ewald
method is expressed as follows.

∇Gp (R) = ∇Gspat (R) +∇Gspec (R) (11)

∇Gspat (R) = − 1

8π

∑
n,m

Rnme−jβ0·ρnm

·
∑
±

e±jkRnm


∓jkRnm + 1

R3
nm

erfc
(
RnmE± jk

2E

)
+

2E√
πR2

nm

e−(RnmE+jk
2E )

2

(12)

∇Gspec (R) = x̂dGspec (R)

dx
+ŷdGspec (R)

dy
+ẑdGspec (R)

dz
(13)

In (13),

dGspec (R)

dx
= −jktx (n,m)

1

4SU

∑
n,m

e−jkt(n,m)·R

jkz (n,m)
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(a)  (b)  

FIGURE 2. Diagram of the interactions between the source points and the observation point of Green’s functions (a) Gp1 and (b) Gp2.

·
∑
±

e±jZkz(n,m)erfc
(
jkz (n,m)

2E
± ZE

)
(14a)

dGspec (R)

dy
= −jkty (n,m)

1

4SU

∑
n,m

e−jkt(n,m)·R

jkz (n,m)

·
∑
±

e±jZkz(n,m)erfc
(
jkz (n,m)

2E
± ZE

)
(14b)

dGspec (R)

dz
=

1

4SU

∑
n,m

e−jkt(n,m)·R

jkz (n,m)

·
∑
±

e±jZkz(n,m)

±jkz (n,m) erfc
(

jkz(n,m)
2E ±ZE

)
∓ 2E√

π
e−(

jkz(n,m)
2E ±ZE)

2

(14c)
The Ewald series converge very fast. In most scenarios, se-

ries terms with |n| , |m| < 3 are sufficient to meet the desired
calculation accuracy. In actual calculations of these series, we
start by calculating the (0, 0)th term, and then calculate the
(n,m)th terms where |n|+ |m| = 1, 2, 3 . . ., until the threshold
is met. In our calculations, the threshold is set as 1e− 10.

3. INTERPOLATING STRATEGY
The objective of this section is to efficiently obtain the Green’s
function of any observation point within the entire space U us-
ing an interpolation table. The interpolation strategy consists of
two steps: the first step is to construct the interpolation table,
and the second step is to retrieve the value of Green’s function
at a specific observation point through interpolation from the
table. Among these steps, constructing the interpolation table
is the most time-consuming process.

3.1. Three Properties of Periodic Green's Function
The construction of the new interpolation table requires three
properties of the periodic Green’s functions. These three prop-
erties are listed as follows.

Property 1: translational invariance
This is the fundamental property of Green’s functions and

their gradients. This property states that when the source point
and the observation point in space are translated along the same
vector, the Green’s function remains unchanged, i.e.,

Gp (r, r′) = Gp (r+ t, r′ + t) (15)

This property holds true for any arbitrary translation vector t.
By utilizing this property, all source points can be translated to
a specified position, and then the Green’s function at the trans-
lated observation point can be studied.

Property 2: periodic phase shift
This is a specific property of the periodic Green’s function

and its gradient. By using this property, the Green’s function
within the whole U can be expressed in terms of the Green’s
function within one-quarter of U. We will now focus on how to
represent the periodic Green’s function that acts beyond one-
quarter of U using the periodic Green’s function within one-
quarter of U.
Take the situation shown in Figure 2(a) as an example. We

divide U into four parts, namely I, II, III, and IV. We now study
the periodic Green’s function of the source point and the ob-
servation point indicated in the figure, denoted as Gp1. It is
evident that the vector from the real source point to the ob-
servation point goes beyond one-quarter of the periodic unit.
According to (1), the periodic Green’s function includes inter-
actions between an infinite number of source points (including
real and virtual source points) and the observation point (No-
tice that Figure 2(a) only illustrates the vector between the real
source point and observation point, as well as the vectors be-
tween eight virtual source points within the surrounding units
of U and the observation point.). We label the vector from the
real source point to the observation point as Rdirect. Since the
observation point falls within IV, the vector from the virtual
source point in the (1, 1)th unit to the observation point is the
closest, and we label this vector as Rnearest, while other vec-
tors from the virtual source points to the observation point are
labeled as Rother.
Now let us take a look at the source-to-observation interac-

tions of Green’s function Gp2 shown in Figure 2(b). In Fig-
ure 2(b), the observation point remains in the same position as
that in Figure 2(a), but the real source point is placed at the lo-
cation of the source point withRnearest. It is not difficult to see
that the periodic Green’s functions represented by Figure 2(a)
and Figure 2(b) contain exactly the same set of Rnm, but due
to the different placement of the real source point, these two
Green’s functions differ only by a phase factor. Specifically,
for Figure 2(a) and Figure 2(b), this phase factor is ejβ0·ρnm ,
namely

Gp1 = ejβ0·ρnmGp2 (16)
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FIGURE 3. Diagram of mirror points.

FIGURE 4. Region for Interpolation Table 1. FIGURE 5. Region for Interpolation Table 2. FIGURE 6. Region for Interpolation Table 3.

Similar conclusion can be made for the situations where the
observation point is put in II or III. In a word, by utilizing
the periodic-phase-shift property, the periodic Green’s func-
tion that acts beyond one-quarter of the unit can be expressed
in terms of the periodic Green’s function that acts within one-
quarter of the unit.

Property 3: vertical symmetry
Consider the scenario depicted in Figure 3. In Figure 3, the

observation points F1 and F2 are mirror symmetric about the
xoy plane, while the source point S is located within the xoy
plane. For the periodic Green’s function, the phase term con-
strained by Floquet’s theorem only affects the transverse factor.
Therefore, in Figure 3, the periodic Green’s functions corre-
sponding to F1 and F2 are the same, but the z-components of
the gradient of the periodic Green’s functions corresponding to
F1 and F2 are opposite to each other.

3.2. Construction of the Minimal Interpolation Table
If we consider only the first property of the periodic Green’s
function, then region of the interpolation table for the periodic
Green’s function is as shown in Figure 4. Interpolation table
with this interpolation region is denoted as Interpolation Ta-
ble 1.
In Figure 4, the green region represents the region for con-

structing the interpolation table, which is also the whole U. We
divide U into n, m, and p segments along the a1, a2, and z di-
rections, respectively, resulting in a total of nmp small cells,
with each small cell called an interpolation cell. Considering
that the Green’s function needs to encompass all directions in
three-dimensional space, the eight vertices of U are set as real
source points. The eight vertices of each interpolation cell are
the observation points to be recorded. As a result, Interpola-
tion Table 1 requires precomputing (m+ 1) (n+ 1) (p+ 1) ·8

values of the periodic Green’s function. Conventionally, Inter-
polation Table 1 is the most widely used.
Next, if we also consider the second property of the peri-

odic Green’s function, then the interpolation region for the in-
terpolation table would be as shown in Figure 5. Interpolation
table with this interpolation region is denoted as Interpolation
Table 2. If we use interpolation cells of the same size as Inter-
polation Table 1, then Interpolation Table 2 would require pre-
computing a total of [(n+ 1) /2] [(m+ 1) /2] (p+ 1)·8 values
of the periodic Green’s function.
Finally, when we consider all of the three properties, we ob-

tain the interpolation region shown in Figure 6. The interpo-
lation table with this interpolation region is denoted by Inter-
polation Table 3. Compared to Interpolation Table 2, Interpo-
lation Table 3 has four fewer source points. If we use inter-
polation cells of the same size as Interpolation Table 1, Inter-
polation Table 3 would require precomputing a total number
of [(n+ 1) /2] [(m+ 1) /2] (p+ 1) · 4 values of the periodic
Green’s function. It can be seen that, with the same interpo-
lation cell size, Interpolation Table 3 is one-eighth the size of
Interpolation Table 1 (which is the most commonly used one).
Using (2), (3), and (4), the calculation time for each periodic
Green’s function value is similar, thus, it is evident that the con-
struction time for Interpolation Table 3 is approximately one-
eighth of the construction time for Interpolation Table 1. We
refer to Interpolation Table 3 as the minimal interpolation ta-
ble.

3.3. Extraction of Singular Terms
To construct an interpolation table, using nonuniform cells [8]
near the source points to handle the Green’s function’s rapid
variation is cumbersome. In free and periodic space, after re-
moving the singular terms, the remaining part of Green’s func-
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tion exhibits good smoothness. Thus, we construct the table
with this “smooth” Green’s function for linear interpolation.
Singular terms are reintroduced later for the final results.
For nearly square periodic units, extract the singular term

from the (0, 0)th unit suffices. In this case, the smooth Green’s
function (Gsp) and its gradient (∇Gsp) can be represented as
follows

Gsp (R)=Gp (R)− e−jβ0·ρ00

4πR00
(17)

∇Gsp (R)=∇Gp (R)+
(
k2R00

8πR00
+

R00

4πR3
00

)
e−jβ0·ρ00 (18)

However, when we need to deal with units that have ex-
tremely skewed transverse sections, the singular terms corre-
sponding to the surrounding units of the (0, 0)th unit also need
to be extracted. In this case, the smooth Green’s function and
its gradient should be expressed as:

Gsp (R) = Gp (R)−
∑

|n,m|<2

e−jβ0·ρnm

4πRnm
(19)

∇Gsp (R) = ∇Gp (R)

+
∑

|n,m|<2

(
k2Rnm

8πRnm
+

Rnm

4πR3
nm

)
e−jβ0·ρnm (20)

It means that a total of nine singular terms need to be re-
moved.
Finally, when constructing the interpolation table, there is

also the situation where the source point coincides with the field
point. Numerically, this can be handled by applying a small off-
set. In practice, we offset the observation point outward along
the a1, a2, and z directions by 1e − 8m. This approach can
achieve satisfactory accuracy in commonmicrowave frequency
bands.

3.4. Linear Interpolation
With the help of three properties of periodic Green’s functions,
we can always locate the observation point of any Green’s func-
tion inside a unit within the minimal interpolation table. Within
the interpolation cell, using the values of the smooth Green’s
function at the eight vertices of the interpolation cell, we can
obtain the value of the smooth Green’s function at the observa-
tion point through linear interpolation. Linear interpolation can
be performed as follows.
As shown in Figure 7,P1 toP8 are the eight vertices of the in-

terpolation cell; Pp is the observation point within that cell; and
Pp1 andPp2 are the vertical projection points ofPp on the lower
and upper faces of the interpolation cell, respectively. During
interpolation, the first step is to use two-dimensional linear in-
terpolation based on the information of points P1 to P4 and P5

to P8 to obtain the values of the smooth Green’s function at
Pp1 and Pp2. Then, based on the information of Pp1 and Pp2,
one-dimensional linear interpolation is used to finally obtain the
value of the smooth Green’s function at Pp.

FIGURE 7. Linear interpolation in an interpolation cell.

3.5. Process of the Interpolation Scheme

After constructing the interpolation table using the smooth
Green’s function within the interpolation region shown in Fig-
ure 6, the process of obtaining the Green’s function and its gra-
dient of given source point Ps and observation point Pf using
the interpolation algorithm can be summarized as follows:

Step 1: Obtain the vector Psf from Ps to Pf by using coor-
dinates of Ps and Pf .

Step 2: Translate Psf so that Ps is located at one of the ver-
tices of U, while ensuring that Pf is inside U.

Step 3: Utilize Property 2 to map Psf onto the interpolation
region shown in Figure 5, denoting the corresponding vector
as P ′

sf . Notice that the source point of P ′
sf lies at one of the

vertices of the interpolation region. Gsp and ∇Gsp of P ′
sf are

the same as those of Psf .
Step 4: If the vertical coordinate of P ′

sf is greater than or
equal to 0, then Gsp and∇Gsp of P ′

sf can be directly obtained
through linear interpolation within the interpolation table. If the
vertical coordinate of P ′

sf is less than 0, first negate the vertical
coordinate of P ′

sf to obtain P ′′
sf , and then use linear interpo-

lation within the interpolation table to obtainGsp and∇Gsp of
P ′′

sf . Gsp of P ′′
sf is the same as that of P ′

sf , while the z-
component of∇Gsp of P ′′

sf needs to be negated to obtain the
correct∇Gsp of P ′

sf .
Step 5: Add back the singular terms corresponding to Gsp

and ∇Gsp to obtain the final values of the periodic Green’s
function and its gradient.

4. NUMERICAL EXAMPLES
In this section, two numerical examples are given to compare
the results obtained by the interpolation method described in
the text with the series results obtained by the Ewald method.
The first example considers a periodic unit with a square

transverse section, as shown in Figure 8. The transverse pe-
riodic vectors of the unit are a1 = (15, 0) and a2 = (0, 15).
The source point for the periodic Green’s function is placed at
one vertex of the unit U, and the observation points are located
along a sampling line. The sampling line is parallel to the xoy
plane and is positioned 0.15mm above the source point. There
are 1000 sampling points on the sampling line. The working
frequency is set at 10GHz, and the angles of incident wave are
θinc = 45◦ and ϕinc = 30◦, respectively. The edge length of
the interpolation cell is chosen as 1/30λ. In this example, the
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FIGURE 8. Square periodic unit.
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FIGURE 9. Values of (a) Gp and (b)∇Gp of different methods.
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FIGURE 10. Enlarged views 0f the local details of Figure 9(b). (a) Detail 1 and (b) detail 2.

smooth Green’s function only excludes the singular terms of the
(0, 0)th unit.
Figure 9(a) presents the results of real and imaginary parts

of the Green’s function, and Figure 9(b) shows the results of
the real and imaginary parts of the x component of the gradient
of the Green’s function. In Figure 9, the dashed lines represent
the results directly obtained by the Ewald series method, while
the solid lines represent the results obtained by the interpolation
method of Subsection 3.5. Figure 10 gives enlarged views of
the local details of Figure 9(b). It can be observed that the inter-
polation results align well with the actual values of the Green’s
function and its gradient, indicating that in this case, it is suf-

ficient to just exclude the singular terms of the (0, 0)th unit to
get satisfactory accuracy.
The second example considers a periodic unit with an ex-

tremely skewed parallelogram transverse section, as shown in
Figure 11. The transverse periodic vectors of the unit are a1 =
(10, 9) and a1 = (9, 10). The source point for the periodic
Green’s function is placed at one vertex of the unit U, and the
observation points are located along a sampling line. The sam-
pling line is parallel to the xoy plane and is positioned 0.15mm
above the source point. There are 1000 sampling points on the
sampling line. The working frequency is set at 10GHz, and
the angles of incident field are θinc = 45◦ and ϕinc = 30◦, re-
spectively. The side length of the interpolation cell is chosen
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FIGURE 11. Skewed parallelogram unit.
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FIGURE 13. (a) Enlarged views of the local details of Figure 12(b). (b) Interpolation results with different∇Gsp.

as 1/30λ. In this example, all singular terms are excluded from
the smoothed Green’s function.
Figure 12(a) presents the results of the real and imaginary

parts of the Green’s function, and Figure 12(b) shows the results
of the real and imaginary parts of the x component of the gradi-
ent of the Green’s function. In Figure 12, the dashed line repre-
sents the results directly obtained by the Ewald series method,
while the solid line represents the results obtained by the inter-
polation method of Subsection 3.1. Figure 13(a) is an enlarged
view of the local details of Figure 12(b). It can be observed that
the interpolation results align well with the actual values of the
Green’s function and its gradient.
Furthermore, it should be noted that for the scenario shown

in Figure 11, if the smooth Green’s function in the interpola-
tion table only excludes the singular terms of the (0, 0)th unit,

the obtained results are not satisfactory. Figure 13(b) compares
the interpolation results with different ∇Gsp. The dotted lines
represent the interpolation results using the∇Gsp that excludes
only the singular terms of the (0, 0)th unit. It can be seen that
excluding only the singular terms of the (0, 0)th unit is not suf-
ficiently accurate in this case. To address general scenarios,
it is necessary to exclude all singular terms when constructing
the interpolation table for the smooth Green’s function and its
gradient.

5. CONCLUSION
This paper first proposes a construction strategy for a minimal
interpolation table of 2D periodic Green’s functions, which is
one-eighth the size of a traditional interpolation table. The min-
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imal interpolation table fully utilizes three properties of the pe-
riodic Green’s function, namely, translational invariance, peri-
odic phase shift, and vertical symmetry. In contrast, a tradi-
tional interpolation table only utilizes the translational invari-
ance of the Green’s function. The construction of the interpo-
lation table employs smooth Green’s functions, which require
the exclusion of all singular terms to meet the accuracy require-
ments of general scenarios. After obtaining the desired smooth
Green’s functions through linear interpolation in the interpola-
tion table, the singular terms are added back to obtain the final
values of the Green’s functions. Numerical results demonstrate
the accuracy and effectiveness of the proposed interpolation
method, making it suitable for electromagnetic field calcula-
tions and analysis of periodic structures when being combined
with numerical methods.
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