Vol. 118
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2024-03-04
Design of Dual-Band FPD with High Selectivity
By
Progress In Electromagnetics Research Letters, Vol. 118, 41-46, 2024
Abstract
In this brief, a dual-band filtering power divider (FPD) with high selectivity and independently controllable passbands is designed. The proposed FPD consists of asymmetric folded F-type resonators (AFFRs) and quarter-wavelength three parallel-coupled lines (TPCLs). The center frequencies of the dual bands can be determined by adjusting the physical lengths of AFFRs. Meanwhile, TPCLs can increase the transmission paths and introduce multiple transmission zeros (TZs) to achieve high selectivity. For demonstration, the proposed FPD is designed, fabricated, and measured. The center frequencies are 2.59/3.63 GHz with the 3-dB fractional bandwidths (FBWs) of 12.95% and 7.88%, and the isolation between port 2 and port 3 is better than 12.56/21.03 dB. The minimum insertion losses are better than 0.54/0.32 dB in each passband. The simulated results are compared with measured ones, and good agreement is realized.
Citation
Tiantian Zhang, Lei Chen, Meng Liu, Jinyi Liu, and Min Wang, "Design of Dual-Band FPD with High Selectivity," Progress In Electromagnetics Research Letters, Vol. 118, 41-46, 2024.
doi:10.2528/PIERL24010801
References

1. Luo, Zhenghai, Gang Zhang, Huaiwei Wang, Na Li, Kam Weng Tam, Liming Tang, Wanchun Tang, and Jiquan Yang, "Dual-band and triple-band filtering power dividers using coupled lines," IEEE Transactions on Circuits and Systems II: Express Briefs, Vol. 70, No. 4, 1440-1444, Apr. 2023.
doi:10.1109/TCSII.2022.3223922

2. Wei, Feng, Hao Jie Yue, Xiao Hang Zhang, and Xiao-Wei Shi, "A balanced quad-band BPF with independently controllable frequencies and high selectivity," IEEE Access, Vol. 7, 110316-110322, Jul. 2019.
doi:10.1109/ACCESS.2019.2934494

3. Wei, Feng, Chi Yuan Zhang, Cao Zeng, and Xiao Wei Shi, "A reconfigurable balanced dual-band bandpass filter with constant absolute bandwidth and high selectivity," IEEE Transactions on Microwave Theory and Techniques, Vol. 69, No. 9, 4029-4040, Sep. 2021.
doi:10.1109/TMTT.2021.3093907

4. Zhao, Xi-Bei, Feng Wei, Peng Fei Zhang, and Xiao Wei Shi, "Mixed-mode magic-ts and their applications on the designs of dual-band balanced out-of-phase filtering power dividers," IEEE Transactions on Microwave Theory and Techniques, Vol. 71, No. 9, 3896-3905, Sep. 2023.
doi:10.1109/TMTT.2023.3253567

5. Wen, Pin, Zhewang Ma, Haiwen Liu, Shuangshuang Zhu, Baoping Ren, Yi Song, Xiaolong Wang, and Masataka Ohira, "Dual-band filtering power divider using dual-resonance resonators with ultrawide stopband and good isolation," IEEE Microwave and Wireless Components Letters, Vol. 29, No. 2, 101-103, Feb. 2019.
doi:10.1109/LMWC.2019.2890844

6. Sajadi, Ali, Akram Sheikhi, and Abdolali Abdipour, "Analysis, simulation, and implementation of dual-band filtering power divider based on terminated coupled lines," IEEE Transactions on Circuits and Systems II: Express Briefs, Vol. 67, No. 11, 2487-2491, Nov. 2020.
doi:10.1109/TCSII.2020.2981355

7. Li, Wen Tao, Hao Ran Zhang, Xue Jing Chai, Yong Qiang Hei, Jin Chao Mou, and Xiao Wei Shi, "Compact dual-band balanced-to-unbalanced filtering power divider design with extended common-mode suppression bandwidth," IEEE Microwave and Wireless Components Letters, Vol. 32, No. 6, 511-514, Jun. 2022.

8. Gomez-Garcia, Roberto, Manuel Sanchez-Renedo, Bernard Jarry, Julien Lintignat, and Bruno Barelaud, "A class of microwave transversal signal-interference dual-passband planar filters," IEEE Microwave and Wireless Components Letters, Vol. 19, No. 3, 158-160, Mar. 2009.
doi:10.1109/LMWC.2009.2013738

9. Wang, Yujie, Chunxia Zhou, Kang Zhou, and Wen Wu, "Compact dual‐band filtering power divider based on SIW triangular cavities," Electronics Letters, Vol. 54, No. 18, 1072-1074, Sep. 2018.
doi:10.1049/el.2018.5611

10. Ravelo, Blaise and Olivier Maurice, "Kron–Branin modeling of YY-tree interconnects for the PCB signal integrity analysis," IEEE Transactions on Electromagnetic Compatibility, Vol. 59, No. 2, 411-419, Apr. 2017.

11. Ravelo, B., O. Maurice, and S. Lallechere, "Asymmetrical 1 : 2 Y‐tree interconnects modelling with Kron–Branin formalism," Electronics Letters, Vol. 52, No. 14, 1215-1216, Jul. 2016.
doi:10.1049/el.2016.1142

12. Ravelo, Blaise, "Tee power divider and combiner based negative group delay topology," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 28, No. 9, 1-9, Nov. 2018.
doi:10.1002/mmce.21414

13. Liu, Yun, Lei Zhu, and Sheng Sun, "Proposal and design of a power divider with wideband power division and port-to-port isolation: A new topology," IEEE Transactions on Microwave Theory and Techniques, Vol. 68, No. 4, 1431-1438, Apr. 2020.

14. Wei, Feng, Xi-Bei Zhao, and Xiao Wei Shi, "A balanced filtering quasi-Yagi antenna with low cross-polarization levels and high common-mode suppression," IEEE Access, Vol. 7, 100113-100119, Jul. 2019.