Vol. 124
Latest Volume
All Volumes
PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2024-02-15
Advancing Wireless Connectivity: a Dual-Band Microstrip Antenna Enhanced by Hexagon Cell Reflector for Superior Gain and Directivity
By
Progress In Electromagnetics Research M, Vol. 124, 53-61, 2024
Abstract
In this exploration, our focus lies on unveiling a novel Mixed Multi-Elliptical Shaped (MMES) microstrip patch antenna, notably compact in design. Using the co-planar waveguide (CPW) port technique on an FR-4 substrate, we introduce an antenna showcasing a dual fractional bandwidth, and it spans 76.95% from 2.87 to 6.5 GHz and 53.85% from 8.06 to 14 GHz. To enhance both Gain and Directivity, our design integrates a Hexagon Cell with an Octagon Slot array reflector. This addition results in a peak gain of 8.759 dBi and a maximum directivity of 9.537 dBi at 6 GHz. Achieving optimal Gain and Directivity involved precise adjustments to the gap between the antenna and the reflector plane. The overall dimensions of our proposed antenna measure 59×59×11.67 mm3. Rigorous simulations and empirical validation strongly support the potential of this antenna for applications in BT, WLAN, and WiMAX.
Citation
Maniram Ahirwar, and Virendra Singh Chaudhary, "Advancing Wireless Connectivity: a Dual-Band Microstrip Antenna Enhanced by Hexagon Cell Reflector for Superior Gain and Directivity," Progress In Electromagnetics Research M, Vol. 124, 53-61, 2024.
doi:10.2528/PIERM23122703
References

1. Juyal, Prateek and Lotfollah Shafai, "A high-gain single-feed dual-mode microstrip disc radiator," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 6, 2115-2126, Jun. 2016.
doi:10.1109/TAP.2016.2543804

2. Feresidis, A. P. and J. C. Vardaxoglou, "High gain planar antenna using optimised partially reflective surfaces," IEE Proceedings - Microwaves, Antennas and Propagation, Vol. 148, No. 6, 345-350, Dec. 2001.

3. Foroozesh, Alireza and Lotfollah Shafai, "Investigation into the effects of the patch-type FSS superstrate on the high-gain cavity resonance antenna design," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 2, 258-270, 2010.

4. Foroozesh, Alireza and Lotfollah Shafai, "On the characteristics of the highly directive resonant cavity antenna having metal strip grating superstrate," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 1, 78-91, Jan. 2012.

5. Feresidis, A. P., G. Goussetis, S. H. Wang, and J. C. Vardaxoglou, "Artificial magnetic conductor surfaces and their application to low-profile high-gain planar antennas," IEEE Transactions on Antennas and Propagation, Vol. 53, No. 1, 209-215, Jan. 2005.
doi:10.1109/TAP.2004.840528

6. Mateo-Segura, Carolina, George Goussetis, and Alexandros P. Feresidis, "Sub-wavelength profile 2-D leaky-wave antennas with two periodic layers," IEEE Transactions on Antennas and Propagation, Vol. 59, No. 2, 416-424, Feb. 2011.
doi:10.1109/TAP.2010.2096384

7. Zhou, L., H. Q. Li, Y. Q. Qin, Z. Y. Wei, and C. T. Chan, "Directive emissions from subwavelength metamaterial-based cavities," Applied Physics Letters, Vol. 86, No. 10, 101101-1-3, Mar. 2005.
doi:10.1063/1.1881797

8. Ourir, Abdelwaheb, André De Lustrac, and Jean-Michel Lourtioz, "All-metamaterial-based subwavelength cavities (λ/60) for ultrathin directive antennas," Applied Physics Letters, Vol. 88, No. 8, 084103, Feb. 2006.
doi:10.1063/1.2172740

9. Al-Gburi, Ahmed Jamal Abdullah, Imran Bin Mohd Ibrahim, Mohammed Yousif Zeain, and Zahriladha Zakaria, "Compact size and high gain of CPW-fed UWB strawberry artistic shaped printed monopole antennas using FSS single layer reflector," IEEE Access, Vol. 8, 92697-92707, 2020.
doi:10.1109/ACCESS.2020.2995069

10. Gan, Wei, Xi Lu, Jia Yang, Ziqi Zhang, Fei Liu, and Shuhui Yang, "Design of the triple band microstrip antenna with AMC reflector," 2020 Asia Conference on Computers and Communications (ACCC), 2020.

11. Olawoye, Taiwo O. and Pradeep Kumar, "A high gain microstrip patch antenna with slotted ground plane for sub-6 GHz 5G communications," 2020 International Conference on Artificial Intelligence, Big Data, Computing and Data Communication Systems (icABCD), 1-6, 2020.

12. Yuan, Yan-Ning, Jiao-Jie Feng, and Xiao-Li Xi, "Design of wearable antenna with compact artificial magnetic conductor reflecting plate," 2017 Sixth Asia-Pacific Conference on Antennas and Propagation (APCAP), 1-3, Oct. 2017.

13. Chung, Kwok L. and Sarawuth Chaimool, "Broadside gain and bandwidth enhancement of microstrip patch antenna using a MNZ-metasurface," Microwave and Optical Technology Letters, Vol. 54, No. 2, 529-532, 2012.

14. Kundu, Surajit, Ayan Chatterjee, Sanjay Kumar Jana, and Susanta Kumar Parui, "A compact umbrella-shaped UWB antenna with gain augmentation using frequency selective surface," Radioengineering, Vol. 27, No. 2, 448-454, Jun. 2018.
doi:10.13164/re.2018.0448

15. Abdulhasan, Raed Abdulkareem, Rozlan Alias, Khairun Nidzam Ramli, Fauziahanim Che Seman, and Raed A. Abd-Alhameed, "High gain CPW-fed UWB planar monopole antenna-based compact uniplanar frequency selective surface for microwave imaging," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 29, No. 8, e21757, Aug. 2019.
doi:10.1002/mmce.21757

16. Yuan, Yanning, Xiaoli Xi, and Yuchen Zhao, "Compact UWB FSS reflector for antenna gain enhancement," IET Microwaves, Antennas & Propagation, Vol. 13, No. 10, 1749-1755, Aug. 2019.
doi:10.1049/iet-map.2019.0083

17. Tahir, Farooq A., Talha Arshad, Sadiq Ullah, and James A. Flint, "A novel FSS for gain enhancement of printed antennas in UWB frequency spectrum," Microwave and Optical Technology Letters, Vol. 59, No. 10, 2698-2704, Oct. 2017.