Vol. 118
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2024-02-14
DOA Estimation of Quasi-Stationary Signals Based on a Separated Generalized Nested Array
By
Progress In Electromagnetics Research Letters, Vol. 118, 9-14, 2024
Abstract
This paper proposes a sparse array consisting of two separated generalized nested arrays. The unit element-spacing of each generalized nested array can be adjusted to multiple half-wavelengths of the incident signal. By adjusting the element-spacing, the mutual coupling effect can be greatly reduced. For this array, a direction of arrival (DOA) estimation method of quasi-stationary signals has also been proposed. By using the received signals of the separated generalized nested array, a signal subspace is obtained. Then, this subspace is filled into a higher-order signal subspace to avoid angle ambiguity. Using the higher-order signal subspace, DOAs of all signals can be estimated by spectral peak search. Simulation results show that the proposed separated generalized nested array has better than the conventional nested array performance in DOA estimation.
Citation
Jing Zhao, Sheng Liu, Decheng Wu, and Cheng Zeng, "DOA Estimation of Quasi-Stationary Signals Based on a Separated Generalized Nested Array," Progress In Electromagnetics Research Letters, Vol. 118, 9-14, 2024.
doi:10.2528/PIERL23112901
References

1. Schmidt, R., "Multiple emitter location and signal parameter estimation," IEEE Transactions on Antennas and Propagation, Vol. 34, No. 3, 276-280, Mar. 1986.
doi:10.1109/TAP.1986.1143830

2. Nie, Xi and Liping Li, "A computationally efficient subspace algorithm for 2-D DOA estimation with L-shaped array," IEEE Signal Processing Letters, Vol. 21, No. 8, 971-974, Aug. 2014.
doi:10.1109/LSP.2014.2321791

3. Roy, R. and T. Kailath, "ESPRIT-estimation of signal parameters via rotational invariance techniques," IEEE Transactions on Acoustics, Speech, and Signal Processing, Vol. 37, No. 7, 984-995, Jul. 1989.
doi:10.1109/29.32276

4. Ma, Wing-Kin, Tsung-Han Hsieh, and Chong-Yung Chi, "DOA estimation of quasi-stationary signals with less sensors than sources and unknown spatial noise covariance: A Khatri–Rao subspace approach," IEEE Transactions on Signal Processing, Vol. 58, No. 4, 2168-2180, Apr. 2010.
doi:10.1109/TSP.2009.2034935

5. Hu, Jie, Wei Li, and Yong Jue Chen, "2-D DOA estimation of quasi-stationary signals via tensor modeling," Applied Mechanics and Materials, Vol. 743, 458-462, 2015.

6. Wu, Fan, Fei Cao, Xurong Zhang, Shikun Lu, and Yanhong Zhang, "DOA estimation of the quasi-stationary signal using sparse reconstruction," IET Radar, Sonar and Navigation, Vol. 16, No. 4, 748-757, Apr. 2022.
doi:10.1049/rsn2.12217

7. Pal, Piya and P. P. Vaidyanathan, "Nested arrays: A novel approach to array processing with enhanced degrees of freedom," IEEE Transactions on Signal Processing, Vol. 58, No. 8, 4167-4181, Aug. 2010.
doi:10.1109/TSP.2010.2049264

8. Pal, Piya and P. P. Vaidyanathan, "Coprime sampling and the MUSIC algorithm," 2011 Digital Signal Processing and Signal Processing Education Meeting (DSP/SPE), 289-294, Sedona, AZ, USA, 2011.

9. Huang, Huiping, Bin Liao, Xiaoye Wang, Xiansheng Guo, and Jianjun Huang, "A new nested array configuration with increased degrees of freedom," IEEE Access, Vol. 6, 1490-1497, 2017.
doi:10.1109/ACCESS.2017.2779171

10. Liu, Sheng, Jing Zhao, Decheng Wu, and Hailin Cao, "Grade nested array with increased degrees of freedom for quasi-stationary signals," Progress In Electromagnetics Research Letters, Vol. 80, 75-82, 2018.

11. Liu, Sheng, Hailin Cao, Decheng Wu, and Xiyuan Chen, "Generalized array architecture with multiple sub-arrays and hole-repair algorithm for DOA estimation," Computers, Materials & Continua, Vol. 64, No. 1, 589-605, 2020.
doi:10.32604/cmc.2020.09964

12. Liu, Sheng, Jing Zhao, Decheng Wu, Yiwang Huang, and Linli Xia, "An unambiguous 2D DOA estimation algorithm by a large-space L-shaped array," Circuits, Systems, and Signal Processing, Vol. 42, No. 11, 6614-6635, 2023.